USER MANUAL

for the
Big-Leaf MAhogany Growth \& Yield Model

CHRISTOPHER FREE
 R. MATTHEW LANDIS
 JAMES GROGAN

Copyright © 2011 by the Authors.

Support for model development and publication provided by:

> USDA Forest Service, International Institute of Tropical Forestry

INTERNATIONAL INSTITUTE OF TROPICAL FORESTRY

ITTO-CITES Program for Implementing CITES Listings of Tropical Timber Species

On the cover: A big-leaf mahogany population (204 hectares) in southeast Pará after 70 years of simulation. Dark circles represent mahogany trees, sized according to diameter. The red squares represent disturbances with the darker red portions representing the zone of recruitment. Seasonal streams are shown in blue and the site boundary is shown in white.

Model Schematic. The model interface as it appears when installed on your computer.

Table of Contents

Model Schematic 3

1. Model Introduction 5
2. Manual Guide 6
3. Model Installation 6
3.1 CD Installation 6
3.2 Web Installation 8
3.3 Online Model 9
4. Help Buttons 11
5. A Brief Guide 12
6. Model Settings 14
6.1 Setup \& Resize Initial Population 14
6.2 Setup \& Run Simulations 15
7. Logging Parameters 15
8. Simulation Results 16
8.1 Population Monitors 16
8.2 Population Plots 17
8.3 Harvest Productivity Monitors 18
9. User Data Upload 18
9.1 Spatial Diameter Data: User Spreadsheet 18
9.2 Spatial Diameter Data: User Shapefile 21
9.3 Non-Spatial Diameter Data: User Spreadsheet 23
9.4 Error Messages \& Trouble Shooting 25
9.5 User Data Upload Examples 26
10. Export Simulation Results 26
11. Simulation Experiments: BehaviorSpace 27
12. Advanced Users \& NetLogo Resources 35
12.1 Command Line Code 35
12.2 Modifying BehaviorSpace Experiments 39
12.3 Model Procedure Code 40
12.4 NetLogo Resources 42
13. Limitations \& Considerations 42
14. Future Modifications 43
15. Acknowledgements 44
16. References \& Suggested Reading 45
17. Contact Us 47
Appendix A: Data Sources 48
Appendix B: Model Details \& Definitions 49
Appendix C: Model Functions 53
Appendix D: Model Code 57

1 MODEL INTRODUCTION

In recent decades big-leaf mahogany, Swietenia macrophylla, has been intensively harvested across its natural range in tropical South America. Future timber production from natural forests will depend on protection and stewardship of surviving commercial populations through sustainable management practices. The Big-Leaf Mahogany Growth \& Yield Model presented here projects population recovery and timber production from simulated harvests of mahogany in the Brazilian Amazon. The model offers forest managers a computer-based tool for assessing the impact of current management practices on both pre-installed example mahogany populations and on user-entered populations. The growth \& yield model uses the NetLogo 4.1.2 (Wilensky 1999) platform and can be installed on computers using Windows or Mac OS X operating systems.

The growth \& yield model functions (algorithms) are derived from demographic data collected annually during 1995-2009 for nearly 600 mahogany trees and many thousands of seedlings, saplings and poles at multiple field sites in southeast Pará and Acre. Model simulations can be run with or without harvesting. Under logging scenarios, the model harvests (kills) trees at specified intervals. During intervals between harvests, surviving individuals grow, reproduce, and die at rates observed in field studies. Harvest simulations are based on current legal management practices (60 cm minimum diameter cutting limit, 20% commercial-sized tree retention rate, minimum 5 commercial-sized trees / 100 ha retention density, 30-year cutting cycle). Forest managers can input mahogany population data from field inventories in order to project recovery and production outcomes following multiple harvests at legal management sites. Harvest parameters can be changed to view population and timber production outcomes under alternative management scenarios by adjusting one or more of the four management practices.

The model interface allows harvest simulations to be set up and run by clicking on a series of buttons as explained in the sections to follow. For a given starting population and harvest scenario, each 'run' will yield a different outcome (number of trees and commercial volume harvested, surviving density, etc.). This occurs because the model functions for survival, growth, and reproduction are recalculated each time step using a random error term, leading to different long-term outcomes. For this reason, average outcomes from multiple simulations will best represent long-term population recovery and production rates for a given population and harvest scenario.

During each time step (year) of model simulation, the following actions occur on the model interface: (1) the time display advances 1 year; (2) trees grow in size on the landscape (trees are sized according to diameter); (3) trees are logged and removed from the landscape at specified harvest intervals; (4) trees die and are removed from the landscape; (5) the landscape experiences disturbance (red circles = disturbance; dark red = zone of recruitment); (6) trees reproduce and new seedlings are added to the landscape; and (7) disturbances are removed from the landscape and the plots and monitors are updated.

2 MANUAL GUIDE

This User Manual is intended for both beginning and advanced users working with the Big-Leaf Mahogany Growth \& Yield Model to inform management decisions. The Manual can be read from front to back for a thorough understanding of how the model works. It can also be queried with specific questions using the section guide below.

MODEL INSTALLATION (section 3) details the model installation process. HELP BUTTONS (section 4) explains where to find help while working in the model interface. \boldsymbol{A} BRIEF GUIDE (section 5) provides basic instructions for navigating the model interface.

USER DATA UPLOAD (section 9) provides instructions for uploading user data into the model framework. SIMULATION EXPERIMENTS (section 11) provides directions for running repeat simulations of a single harvest regime or multiple simulations of varied harvest regimes.

ADVANCED USERS / NETLOGO RESOURCES (section 12) reviews the advanced NetLogo features and identifies resources for interested users to learn more about NetLogo programming.

The remaining sections review model features in greater detail and can be read in advance or when specific questions arise. If you still have questions after reading this User Manual, or have any feedback on the model, please contact the authors (page 47).

3 MODEL INSTALLATION

3.1 CD Installation

The following section explains how to install the NetLogo software from the Big-Leaf Mahogany Growth \& Yield Model CD-ROM and how to run the model using this software.

Step 1. Insert CD into CD Drive

Insert the Big-Leaf Mahogany Growth \& Yield Model CD-ROM into your computer CD drive. If the computer does not open the CD folder within a few minutes, access the CD folder from My Computer on a Windows computer or from the Desktop on a Mac OS X computer.

Step 2. View CD Contents

If you successfully open the CD folder, you will see the Model folder. This folder contains all the files necessary to install the NetLogo software and run the growth \& yield model. Doubleclick the Model folder to view its contents. It contains six elements:
(1) Growth \& Yield Model file
(4) User folder
(2) User Manual file
(5) Results folder
(3) Data folder
(6) NetLogo folder

The Growth \& Yield Model file is the NetLogo file (.nlogo) containing the growth \& yield model. This file will only run after installing the NetLogo software.

The User Manual file is a copy of this User Manual in PDF format.
The Data folder contains all the data files necessary to run the growth \& yield model. Changes to these files may render the model inoperable. DO NOT CHANGE THEM!

The User folder contains example user upload files. These files should be viewed as templates when uploading your own data into the model framework. You will also place your data files in this folder when uploading your own data (section 9).

The Results folder is the default destination for certain BehaviorSpace simulation results and a recommended destination for all other results exports.

The NetLogo folder contains the NetLogo 4.1.2 installers necessary for setting up the growth \& yield model on your computer. This folder also contains the NetLogo 4.1.2 User Manual written by the NetLogo design team.

Step 3. Choose a NetLogo 4.1.2 Installer

Double-click on the NetLogo folder to view its contents. If you are using a Windows computer, double-click the Windows folder, and then double-click the NetLogo4.1.2Installer.exe installer file. If you are using a Mac OS X computer, double-click the MAC OS X folder, and then double-click the NetLogo 4.1.2.dmg installer file.

The installer file will open when double-clicked. Follow the installation instructions to install NetLogo software on your computer. INSTALL NETLOGO ON YOUR COMPUTER AND NOT ON THE GROWTH \& YIELD MODEL CD-ROM.

If you would prefer to download the NetLogo software from the NetLogo website, download NetLogo 4.1.2 here: http://ccl.northwestern.edu/netlogo/4.1.2/

DO NOT USE ANY OTHER VERSION OF NETLOGO. THE MODEL ONLY WORKS IN NETLOGO 4.1.2. Refer to the NetLogo User Manual if you require additional assistance.

Step 4. Move Model Files to Computer

If you have successfully installed the NetLogo 4.1 .2 software, you are ready to open the Growth \& Yield Model file. We recommend that you copy the files from the CD onto your computer. Copy the Models folder and paste it anywhere on your computer. Double-click the Growth \& Yield Model file to begin using the growth \& yield model on your computer.

If you use Mac OS X, a blank NetLogo file may open instead of the Growth \& Yield Model file. This is a known Mac OS X - NetLogo bug and may commonly occur on your computer. It is
easily resolved: simply leave the blank NetLogo file open and double-click the Growth \& Yield Model file again. This will always open the Growth \& Yield Model file correctly.

3.2 Web Installation

The following section explains how to install the NetLogo software from the Big-Leaf Mahogany Growth \& Yield Model website and how to run the model using the software.

Step 1. Download Model Package from Website

Please visit our website to download the most recent version of the growth \& yield model and to learn more about our research: http://www.swietking.org

The model can be downloaded from THE MODEL page on the website or from the QUICK LINKS section on every page on the site (the location of the download file is subject to change but will always be hosted somewhere on the site). Download the zip-file (Model.zip) containing the files necessary to install the NetLogo software and run the model on your computer. The model will be downloaded to your default download location. To specify a different download location, right-click on the link and select the Download Linked File As option.

Step 2. Unzip Model Package Contents

The contents of the Model.zip zip-file must be unzipped using built-in zip software. On most operating systems, double-clicking the zip-file accesses the zip software. However, some systems may require you to right-click the Model.zip file and select the 'unzip' or 'uncompress' options. Follow the unzip instructions of your software and extract the Model folder anywhere on your computer.

Step 3. View the Model Folder Contents

If you successfully unzip the Model.zip zip-file, you will see the Model folder. This folder contains all the files necessary to install the NetLogo software and run the growth \& yield model. Double-click the Model folder to view its contents. It contains six elements:
(1) Growth \& Yield Model file
(4) User folder
(2) User Manual file
(5) Results folder
(3) Data folder
(6) NetLogo folder

The Growth \& Yield Model file is the NetLogo file (.nlogo) containing the growth \& yield model. This file will only run after installing the NetLogo software.

The User Manual file is a copy of this User Manual in PDF format.
The Data folder contains all the data files necessary to run the growth \& yield model. NEVER ALTER OR REMOVE ANY FILES IN THIS FOLDER.

The User folder contains example user upload files. These files should be viewed as templates when uploading your own data into the model framework. You will also place your data files in this folder when uploading your own data (section 9).

The Results folder is the default destination for certain BehaviorSpace simulation results and a recommended destination for all other results exports.

The NetLogo folder contains the NetLogo 4.1 .2 installers necessary for setting up the growth \& yield model on your computer. This folder also contains the NetLogo 4.1.2 User Manual written by the NetLogo design team.

Step 4. Choose a NetLogo 4.1.2 Installer

Double-click on the NetLogo folder to view its contents. If you are using a Windows computer, double-click the Windows folder, and then double-click the NetLogo4.1.2Installer.exe installer file. If you are using a Mac OS X computer, double-click the MAC OS X folder, and then double-click the NetLogo 4.1.2.dmg installer file.

The installer file will open when double-clicked. Follow the installation instructions to install NetLogo software on your computer.

If you would prefer to download the NetLogo software from the NetLogo website, download NetLogo 4.1.2 here: http://ccl.northwestern.edu/netlogo/4.1.2/

DO NOT USE ANY OTHER VERSION OF NETLOGO. THE MODEL ONLY WORKS IN NETLOGO 4.1.2. Refer to the NetLogo User Manual if you require additional assistance.

Step 5. Open Model NetLogo File

If you have successfully installed the NetLogo 4.1.2 software on your computer, you are ready to open the Growth \& Yield Model file. Double-click the Growth \& Yield Model file to begin using the growth \& yield model on your computer.

If you use Mac OS X, a blank NetLogo file may open instead of the Growth \& Yield Model file. This is a known Mac OS X - NetLogo bug and may commonly occur on your computer. It is easily resolved: simply leave the blank NetLogo file open and double-click the Growth \& Yield Model file again. This will always open the Growth \& Yield Model file correctly.

3.3 Online Model

The online version of the Big-Leaf Mahogany Growth \& Yield model can be accessed from the following website: http://www.swietking.org. The online model is identical to the computer model except that it cannot: (1) upload user data files; (2) export simulation results; (3) run BehaviorSpace experiments; (4) accommodate Command Line queries; and (5) resize the model landscape elegantly.

The online version of the model cannot upload user data or export simulations because of the limitations of our web server. Additionally, the online version of the model cannot display the stream and boundary data exhibited in the computer model because the NetLogo GIS extension is currently incompatible with the online applets. Finally, the online version of the model only simulates the SE Pará (204 ha) population because of unidentified programming complications.

BehaviorSpace experiments and Command Line queries can only be accommodated by installing and running NetLogo on your computer. The online applet only runs the features maintained on the model interface. It does not support any NetLogo features occurring outside this interface.

The interface landscape can be resized in the online version of the model but this feature is more difficult to manipulate online than on your computer. The online model will not resize the landscape to a new Patch-Area if the blinking mouse-cursor is still in the Patch-Area input. Click anywhere within the online interface to remove the blinking mouse-cursor from the input (clicking in another input is an effective strategy) and click Resize to resize the model landscape.

These issues will be resolved if possible. Please sign up to receive updates on the model and our research on our website: http://www.swietking.org

Java Versions

The Big-Leaf Mahogany Growth \& Yield Model applet requires that your web browser support Java 5 or higher. The correct version of Java can be obtained following these directions:

- Windows users (Vista, XP, or 2000) can download the Java browser plug-in from here: http://www.java.com/en/download/windows_manual.jsp
- Mac OS X users require version 10.4 or higher. No plug-in is necessary.
- Linux and Unix system users need the Sun Java Runtime Environment Version 5 or higher. This is available for download here: http://www.java.com/. Check your browser's homepage for more information on installing the Java plug-in.

If you think you have the right browser and plug-in but the online model still does not work, check your browser's preferences to ensure that Java is enabled.

The following web site may be helpful for determining which version of Java you have and for getting the correct version installed and running: http://www.javatester.org/

Browser Memory

The Big-Leaf Mahogany Growth \& Yield Model applet may require more memory than the browser normally makes available. This is more likely to happen when simulating large populations.

On Windows, you can increase the available memory ('heap') space in the Java Control Panel's applet runtime settings. In the Java tab of the Java Control Panel, view the Java Applet Runtime

Settings. Enter the following in the Java Runtime Parameters field: -Xmx1024M. Include the initial hyphen ('-') but not the final period ('.'). More information is available here:
$\underline{\text { http://download.oracle.com/javase/1.5.0/docs/guide/deployment/deployment-guide/jcp.html }}$
Mac OS X 10.4 users should note that Mac OS X 10.4 initially had a low memory limit for Java applets (~ 64 megabytes). A Java update from Apple raised the memory limit to 96 megabytes. This update is available through the Software Update but no other options for increasing the Java memory limit are available.

4 HELP BUTTONS

```
?
```

Pressing HELP buttons (?), located on the right side of each model interface section, allows you to see definitions of model features in the DEFINITIONS box (see below). Each model section can be queried in this way.

To see definitions of all model features without pressing each ? button, press the All Definitions button located below the DEFINITIONS box. In addition, definitions are listed in APPENDIX B: MODEL DETAILS \& DEFINITIONS of this Manual.

You can also look for help by selecting Help in the NetLogo menu bar. The Search option can direct you to specific menu items or help topics. The Look Up In Dictionary (F1) option opens a web browser with the dictionary entry for the selected code. The NetLogo User Manual and NetLogo Dictionary links will open the manual and dictionary in a web browser. The NetLogo Users Group option will link you to the NetLogo Users Group, also in a web browser.

This is the DEFINITIONS box as it appears on the model interface. Feature definitions can be viewed by using the blue bar to scroll across the text content.

All definitions can be accessed by pressing \mathbf{A} on the keyboard. This is the shortcut for the All Definitions button.

Button shortcuts are displayed in the upper-right corners of the buttons. E is the shortcut for the Export Results button, \mathbf{S} is the shortcut for the Setup button, \mathbf{D} is the shortcut for the Defaults button, etc.

A button shortcut will appear black when enabled and gray when disabled. To enable shortcuts, click anywhere in the white background of the model interface.

Additional questions can be directed to the authors listed at the end of the Manual (page 47).

5 A BRIEF GUIDE

The following guide describes the most basic method for simulating a pre-defined big-leaf mahogany population.

Step 1. Designate Initial Population to Simulate

Select either a pre-defined example population or upload your own data using one of the USER DATA UPLOAD options (section 9).

Step 2. Set Simulation Time Limit

A simulation will end when the time limit is reached or when all the trees are harvested or die. Adjust the time limit by using your computer cursor to slide the red bar horizontally across the dark green slider.
Movements to the right increase the parameter values while movements to the left decrease the parameter values.

Step 3. Set Logging Parameters

To simulate the population with a harvest regime, select logging 'on', otherwise select logging 'off'. If logging:

Set a minimum diameter cutting limit (default $=60 \mathrm{~cm}$ diameter).

Set a commercial tree retention rate (default $=20 \%$ commercial retention).

Set a minimum post-harvest commercial population density $($ default $=5$ trees $/ 100 \mathrm{ha})$.

Set a cutting cycle length (default $=30$ years).

Step 4. Setup Initial Population

Establish the initial population on the landscape. The population will appear on the model interface in the 'landscape' (middle) field. The landscape population can be resized using the Patch-Area input and the Resize button (section 6.1).

Step 5. Begin Simulations

Run 1 Year
Run 1 Year
1
Run the simulation for a single year. This feature is useful when carefully monitoring a simulation or when troubleshooting.

Run X Years

Run the simulation until the time limit is reached, or until all trees are harvested or die, if this occurs before reaching the time limit.

Step 6. Monitor Simulations
Year 0 Population and Current Population monitors report total tree density (trees $\geq 20 \mathrm{~cm}$ diameter / 100 ha), commercial-sized tree density (commercial trees / $100 \mathrm{ha}=$ default value), and commercial-sized tree volume $\left(\mathrm{m}^{3}\right)$ during Year 0 and the Current simulation year.

Current Population plots show changes in tree size-class distribution and abundance over time. These plots are updated each year according to simulation results.

The Diameter Distribution plot shows the initial size-class distribution in black and the current-year size-class distribution in red. The vertical gray line divides non-commercial and commercial trees.

The Tree Abundance plot shows the abundance of all trees $\geq 20 \mathrm{~cm}$ diameter in black and the abundance of commercial-sized trees in red. The vertical gray lines indicate the harvest years, that is, 31,61 , and 91 years in the example shown.

Harvest Productivity monitors report the volume of trees logged in the most recent harvest as well as the number and volume of trees logged in all previous harvests. Monitors are updated after each logging event. Logged Volume reports the volume (m^{3}) of trees logged in the most recent harvest. Total Logged Volume reports the volume $\left(\mathrm{m}^{3}\right)$ of trees logged in all previous harvests. Total \# Logged Trees reports the number of trees logged in all previous harvests.

Step 7. Export Simulation Results

Export the simulation results to a text (.txt) file on your computer. Results describe initial and final populations and harvest productivity.

6 MODEL SETTINGS

The MODEL SETTINGS parameters determine: (1) which population is simulated during model runs; (2) whether logging is performed; and (3) how long the simulation is run. The MODEL SETTINGS buttons set up the initial population, re-set parameters to default conditions, and begin model simulations. The area (in hectares, or ha) of the field site is also displayed in this section.

MODEL SETTINGS

5	Defaults	Populations			Site Area (ha)212.8		?
Setup		SE Pará (204ha)					
IOn Lo	ing	100 Years	Run 1 Year $\quad 1$		Run X Years	R 	

6.1 Setup \& Resize Initial Population

The Setup button establishes the initial population on the model landscape shown across the center of the model interface. The population displayed on the landscape is selected from the Populations menu, which lists three pre-defined example populations and three user-defined population upload options.

The example populations are based on mahogany population and spatial data from study sites in southeast Pará and Acre. The user populations represent the three methods for uploading user data into the model. The six population options are summarized below. User populations are discussed in greater depth in USER DATA UPLOAD (section 9).

EXAMPLE POPULATIONS

```
SE Pará (204 ha):
SE Pará (1035 ha):
Acre/West Amazon:
```

204-ha field site with 143 trees
1035-ha field site with 745 trees
685-ha field site with 81 trees

SE Pará (204 ha) and SE Pará (1035 ha) present spatial and diameter data for mahogany populations in southeast Pará, Brazil. The forest management and long-term research site, called Marajoara, is located 34 km northwest of Redenção. Marajoara was selectively logged for mahogany during 1992-1994. The population in 204 ha is from a 100% inventory for mahogany trees $\geq 20 \mathrm{~cm}$ diameter. The population in 1035 ha contains the 204-ha population but at lower sampling resolution, representing $>80 \%$ of trees $\geq 20 \mathrm{~cm}$ diameter in this larger forest area. Most of the trees presented here are logged stumps. For more details see Grogan et al. references (section 16).

Acre/West Amazon presents spatial and diameter data for a mahogany population located 40 km south of Sena Madureira in the western Brazilian state of Acre. This data is from a 100% inventory in 685 ha for mahogany trees $\geq 20 \mathrm{~cm}$ diameter. At the time of inventory this was an
unlogged population. The low landscape-scale density is typical of western Amazonian mahogany populations.

USER POPULATIONS

User Population (xyd): For uploading spatial and diameter data from a spreadsheet. User Population (shp): \quad For uploading spatial and diameter data from a shapefile. User Population (csv): For uploading non-spatial diameter data from a spreadsheet.

The site is drawn in the 'landscape' (middle) field of the model interface. If the site is drawn too small for the available space, increase the value shown in Patch-Area and press the Resize button (upper-right on interface). If the site is drawn too large for the available space, decrease the value shown in Patch-Area and press the Resize button. Continue to make adjustments by increasing or decreasing the Patch-Area until you are satisfied with the size of your site on the interface. See section 9.1 Step 4 for more details.

6.2 Setup \& Run Simulations

The Logging and Time parameters determine how the model will simulate the initial population. The Logging switch determines whether the population is simulated with or without logging. Select On to run simulations with logging. Select Off to run simulations without logging.

The Time slider determines how long the simulation will run. The model will simulate the growth and harvest of the initial population until the time limit is reached or until all trees are harvested or die, whichever happens first. Population growth and harvests can be simulated up to 150 years. Changes to the simulation length can be made in 5 -year increments.

The Run 1 Year button runs the model for a single year. The Run X Years button runs the model until the time limit is reached or until all trees are harvested or die, whichever happens first.

The Defaults button returns all variables to default conditions:

Populations:	SE Pará 1 (204 ha)	Logging:	On
Patch-Area:	2.75 pixels	Time:	100 years

7 LOGGING PARAMETERS

The default harvest parameters are set according to the current Brazilian forest management regulations for mahogany. These regulations mandate a minimum diameter cutting limit of ≥ 60 cm , the retention of $\geq 20 \%$ of commercial-sized trees, the prohibition of logging in areas with population densities ≤ 0.05 trees ha^{-1} (5 commercial trees / 100 ha), and a cutting cycle of 25-30 years.

LOGGING PARAMETERS

minimum-diameter	60 cm
minimum-density	5 trees/100ha

retention-rate	20% trees
cutting-cycle	

Harvest parameters can be changed according to user preference. Each parameter can be reset using the computer cursor to move the red bar across the green slider. Movements to the right increase the parameter values while movements to the left decrease the parameter values. The minimum value, maximum value, and value increment are listed for each parameter below:

Minimum Diameter: $\quad 0-100 \mathrm{~cm} ; 5 \mathrm{~cm}$ increments
Retention Rate: $\quad 0-100 \%$ retention; 5% retention increments
Minimum Density: $\quad 0-20$ trees / 100 ha; 1 tree / 100 ha increments
Cutting Cycle:
$0-100$ years; 5-year increments
Pressing the Defaults button will return the logging parameters to default conditions.

Minimum Diameter:	60 cm	Minimum Retention: 20% trees
Minimum Density:	5 trees / 100 ha	Cutting Cycle:
	30 years	

If you do not want to simulate logging, turn logging off using the Logging switch discussed above.

8 SIMULATION RESULTS

The model interface provides information to allow users to observe simulations as they progress.

8.1 Population Monitors

The YEAR 0 POPULATION and CURRENT POPULATION monitors report total tree density, commercial tree density, and commercial tree volume during year 0 and the current simulation year, respectively. YEAR 0 POPULATION monitors are static, while CURRENT POPULATION monitors are updated each year according to simulation results.

YEAR 0 POPULATION

Total Density (\#/100ha)	Commercial Density (\#/100ha)	Commercial Volume (m3)
67.2	40.9	546.4
CURRENT POPULATION		
Total Density (\#/100ha)	Commercial Density (\#/100ha)	Commercial Volume (m3)
27.3	5.6	87.5

Density monitors report tree density as the number of trees per 100 hectares. Density can be converted to abundance using the following equation:

$$
\text { Abundance }=\text { Density } * \text { Area } / 100
$$

where density (trees / 100 ha) is either total or commercial density and area (ha) is the Site Area, as reported in the upper-right portion of the MODEL SETTINGS section of the model interface.

Volume monitors report volume in cubic meters $\left(\mathrm{m}^{3}\right)$. Volume is calculated from the diameter of each tree according to the equation:

$$
\text { Volume }\left(m^{3}\right)=0.056-(0.01421 * \text { Diameter })+(0.001036 * \text { Diameter } \wedge 2)
$$

where tree diameters (cm) are measured 1.3 m above the forest floor or at least 30 cm above the reach of the tallest buttress (Mayhew \& Newton 1998, p. 117).

8.2 Population Plots

The CURRENT POPULATION plots show changes in tree size-class distribution and abundance over time. These plots are updated each year according to simulation results.

The Diameter Distribution plot shows the initial size-class distribution in black. This distribution is static. The current-year size-class distribution is shown in red. This distribution updates each year according to simulation results. The diameter size classes are defined by $10-$ cm intervals and only trees $\geq 20 \mathrm{~cm}$ diameter are plotted. The vertical gray line divides commercial and non-commercial trees as determined by the minimum diameter cutting limit.

The Tree Abundance plot shows the abundance of trees over time. The black line tracks the abundance of all trees $\geq 20 \mathrm{~cm}$ diameter. The red line tracks the abundance of commercial-sized trees. The vertical gray lines indicate the harvest years, that is, 31,61 , and 91 years in the example shown.

8.3 Harvest Productivity Monitors

HARVEST PRODUCTIVITY monitors report the volume of trees logged in the most recent harvest as well as the number and volume of trees logged in all previous harvests. Monitors are updated after each logging event.

HARVEST PRODUCTIVITY

Logged Volume $(\mathrm{m} 3)$	Total Logged Volume $(\mathrm{m} 3)$	Total \# Logged Trees	$?$
48.6	590.9	96	

Logged Volume reports the volume (m^{3}) of trees logged in the most recent harvest.
Total Logged Volume reports the volume $\left(\mathrm{m}^{3}\right)$ of trees logged in all previous harvests.
Total \# Logged Trees reports the number of trees logged in all previous harvests.

9 USER DATA UPLOAD

You can simulate population growth and harvest outcomes of a mahogany population at your own site using the DATA UPLOAD portion of the model interface. At minimum you will need diameter data for the trees within your site.

If you have both spatial distribution (mapping) and tree diameter data, you can upload the data from a spreadsheet or, if available, from a GIS shapefile. Refer below to Spatial Diameter Data: User Spreadsheet and Spatial Diameter Data: User Shapefile (sections 9.1 \& 9.2), respectively, for instructions.

If you only have diameter data, you can upload the data from a spreadsheet, but you will need to know or estimate the dimensions or approximate area of your site. Refer to Non-Spatial Diameter Data: User Spreadsheet (section 9.3) below.

9.1 Spatial Diameter Data: User Spreadsheet

This section describes the procedures necessary to upload diameter data with spatial location information from a user spreadsheet. The spatial diameter data must be formatted according to the instructions below for the model to accept the user data.

Step 1. Data Structure and Format

The first step is to structure your data so the computer can read the information into the model. Create an Excel (.xls)-type spreadsheet to organize the data into three columns: X-coordinates, Y-coordinates, and tree diameters. The columns must be listed in this order for your data to be read into the model.

Column A should contain the X -coordinates (longitude) of each tree. Column B should contain the Y-coordinates (latitude) of each tree. Column C should contain the diameter in centimeters
of each tree. DO NOT GIVE THE COLUMNS HEADERS. The head of your file should look like the example file shown on the next page.

The XY coordinates (longitude/latitude) must be measured in either meters or decimal degrees. In the example above, coordinates are given in UTM (Universal Transverse Mercator) geographic coordinate units taken from a standard GPS unit. Alternatively, coordinates could be given in user-assigned meter units derived from a field-based inventory.

Coordinates cannot be given in degrees, minutes, and seconds. Coordinates measured in this format can be converted here: http://www.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html.

		coordinates	Y-Coordinates	meters	
	\bigcirc	A	B	C	D
	1	579775.8	9136498.4	71.3	
	2	579744.8	9136501.6	79.4	
	3	580177.6	9135822.6	66.1	
	4	580265.1	9135770.8	80.4	
Trees	5	580300.9	9135752.5	45.5	
	6	580317.3	9135686.3	64.7	
	7	580343.1	9135666.1	72.5	
	8	580406.1	9135441.5	79.0	

Diameters must be measured in centimeters (cm). Tree diameter measurements should be taken at 1.3 m above the forest floor or at least 30 cm above the reach of the tallest buttress.

Step 2. Save As Text File

The model software cannot read data from Excel (.xls) files so the data must be saved as a text (.txt) file. In Excel, or a similar spreadsheet program, choose File $>$ Save As and select Text (tab delimited) from the Save As options. Include the .txt extension in the file name. The head of the new text file should look like this, WITHOUT COLUMNS HEADERS:

Diameters

市 498.4	V
9136501.6	79.4
9135822.6	66.1
9135770.8	80.4
9135752.5	45.5
9135686.3	64.7
9135666.1	72.5
9135441.5	79
01 3F.4aF	41

Place the new text file in the Model $>$ User folder. Remember the name of the new text file.

Step 3. NetLogo File Parameters

The final steps towards uploading your data into the model are completed in the DATA UPLOAD portion of the model interface. These parameters specify the name of the user data file, the dimensions of the user field site, and the resolution of the resulting landscape.

DATA UPLOAD

Type the name of the text file from Step 2 containing spatial and diameter data (located in the User folder) into the File-Name input box. Be sure to include the '.txt' file extension when typing the name.

Leave the DIAM-Attribute-Name input blank. This input is only necessary for data uploaded from a user shapefile (section 9.2). Input here will interfere with the present upload.

Type the width (X , in meters) of your site into the Site-Width input box and the height (Y , in meters) of your site into the Site-Height input box. If your site is not rectangular, estimate the width and height of the smallest bounding rectangle (examples shown below). Again, the width and height of your site must be in meters (m).

Type the value 1.00 into the Patch-Area input box. Patch-Area determines the size of landscape patches in pixels and therefore determines the size of the landscape. A Patch-Area of 1.00 is purposefully small and should draw a landscape contained by the available space on the model interface.

Step 4. Resize Site Drawing

After File-Name, Site-Width, Site-Height, and Patch-Area have been specified, press the Setup button under MODEL SETTINGS to draw your site on the model interface. If the site dimensions are incorrect, ensure that the file is formatted correctly (columns: X-coordinate, Ycoordinate, diameter). If you receive an error message, refer to Error Messages / Trouble Shooting (section 9.4) below.

The site should be drawn using a Patch-Area of 1.00 pixel but a larger or smaller Patch-Area may be preferred depending on the dimensions of your site. If the site is drawn too small for the available space, increase the Patch-Area by entering 2.00 and press the Resize button. If the site is drawn too large for the available space, decrease the Patch-Area by entering 0.50 and press the Resize button. Continue to make adjustments by increasing or decreasing the PatchArea until you are satisfied with the size of your site projected onto the model interface.

Step 5. Trouble Shooting

If you require quick assistance, press the ? button for a summary of the DATA UPLOAD features or refer to this manual. See Error Messages / Trouble Shooting (section 9.4) below for a discussion of error messages you may encounter when uploading your data into the model.

9.2 Spatial Diameter Data: User Shapefile

This section describes the procedures necessary to upload your data from a GIS shapefile. A shapefile is a file type produced by GIS software to store location and attribute data. This user data upload feature will not support any other geospatial file format.

Step 1. Place Shapefile in User Folder

Place the shapefile containing spatial diameter data of your tree population in the Model $>$ User folder. Place the dbf file (.dbf) associated with the shapefile here as well (the .prj, .sbn, .sbx, .shx, and .xml files are not necessary). Remember the name of the overarching shapefile (.shp).

Step 2. NetLogo File Parameters

Parameters in the DATA UPLOAD portion of the model interface specify the name of the user data file, the name of the diameter attribute, the dimensions of the field site, and the resolution of the landscape (shown on the next page).

Type the name of the shapefile from Step 1 containing spatial and diameter data (located in the User folder) in the File-Name input box. Include the '.shp' file extension when typing the name.

Type the name of the attribute (data column header) in the shapefile containing the diameter data in the DIAM-Attribute-Name input box. The diameters listed in the shapefile must be measured in centimeters (cm). Tree diameter measurements should be taken at 1.3 m above the forest floor or at least 30 cm above the reach of the tallest buttress.

DATA UPLOAD

Type the width (X , in meters) of your site into the Site-Width input box and the height (Y , in meters) of your site into the Site-Height input box. If your site is not rectangular, estimate the width and height of the smallest bounding rectangle (examples shown above). Again, the width and height of your site must be in meters (m).

Type the value 1.00 into the Patch-Area input box. Patch-Area determines the size of landscape patches in pixels and therefore determines the size of the landscape. A Patch-Area of 1.00 is purposefully small and should draw a landscape contained by the available space on the model interface.

Step 3. Resize Site Drawing

After File-Name, DIAM-Attribute-Name, Site-Width, Site-Height, and Patch-Area have been specified, press the Setup button under MODEL SETTINGS to draw your site on the model interface. The site should be drawn using a Patch-Area of 1.00 pixel but a larger or smaller Patch-Area may be preferred depending on the dimensions of your site.

If the site is drawn too small for the available space, increase the Patch-Area by entering 2.00 and press the Resize button. If the site is drawn too large for the available space, decrease the Patch-Area by entering 0.50 and press the Resize button. Continue to make adjustments by increasing or decreasing the Patch-Area until you are satisfied with the size of your site on the model interface.

Step 4. Trouble Shooting

If you require quick assistance, press the ? button for a summary of the DATA UPLOAD features or refer to this manual. See Error Messages / Trouble Shooting (section 9.4) below for a discussion of error messages you may encounter when uploading your data into the model.

9.3 Non-Spatial Diameter Data: User Spreadsheet

This section describes the procedures necessary to upload diameter data without spatial location information into the model interface. Although spatial diameter data is not required for this data upload feature, you must know or estimate the physical dimensions or area (ha) of your field site.

Step 1. Data Structure and Format

The first step is to structure your data so the computer can read the information into the model. Create a spreadsheet to organize the data into a single column: tree diameter (cm). DO NOT GIVE THE COLUMN A HEADER. The head of your file should look like this:

Diameters must be measured in centimeters (cm). Tree diameter measurements should be taken at 1.3 m above the forest floor or at least 30 cm above the reach of the tallest buttress.

Step 2. Save As CSV File

The modal software cannot read data from Excel (.xls) or similar files, so the data must be saved as a comma separated value (.csv) file. Choose File $>$ Save As and select CSV (comma delimited) from the Save As options. INCLUDE THE '.CSV' EXTENSION IN THE FILE NAME.

Place the new .csv file in the Model $>$ User folder. Remember the name of the .csv file.

Step 3. NetLogo File Parameters

The final steps towards uploading your data into the model are completed in the DATA UPLOAD portion of the model interface. These parameters specify the name of the user data file, the dimensions of the user field site, and the resolution of the resulting landscape.

Type the name of the .csv file from Step 2 containing diameter data (located in the User folder) into the File-Name input box. Be sure to include the '.csv' file extension when typing the name.

DATA UPLOAD

Leave the DIAM-Attribute-Name input blank. This input is only necessary for data uploaded from a user shapefile (section 9.2). Input here will interfere with the present upload.

Type the width (X , in meters) of your site into the Site-Width input box and the height (Y , in meters) of your site into the Site-Height input box. If your site is not rectangular, estimate the width and height of the smallest bounding rectangle (examples shown above). Again, the width and height of your site must be in meters (m).

Type the value 1.00 into the Patch-Area input box. Patch-Area determines the size of landscape patches in pixels and therefore determines the size of the landscape. A Patch-Area of 1.00 is purposefully small and should draw a landscape contained by the available space on the model interface.

Step 4. Resize Site Drawing

After File-Name, Site-Width, Site-Height, and Patch-Area have been specified, press the Setup button under MODEL SETTINGS to draw your site on the model interface. The site should be drawn using a Patch-Area of 1.00 pixel but a larger or smaller Patch-Area may be preferred depending on the dimensions of your site.

If the site is drawn too small for the available space, increase the Patch-Area by entering 2.00 and press the Resize button. If the site is drawn too large for the available space, decrease the Patch-Area by entering 0.50 and press the Resize button. Continue to make adjustments by increasing or decreasing the Patch-Area until you are satisfied with the size of your site on the model interface.

Step 5. Trouble Shooting

If you require quick assistance, press the ? button for a summary of the DATA UPLOAD features or refer to this manual. See Error Messages / Trouble Shooting (section 9.4) below for a discussion of error messages you may encounter when uploading your data into the model.

9.4 Error Messages \& Trouble Shooting

If an error occurs while uploading your data, the model will stop the uploading process and present a message explaining the cause of the error. The following is a list of potential error messages and possible solutions.

A 'Population' must be selected. You selected the blank population option. Please select an actual population to simulate.

An 'Example Population' must be selected. You selected the Example Population heading. Please select an actual example population to simulate.

A 'User Population' must be selected. You selected the User Population heading. Please select an actual user population to simulate.

A 'File-Name' must be specified. You selected a User Population but did not specify a user data file. Please provide the name of the user data file or choose an example population.
'File-Name' must be a .txt file. You selected the User Population (xyd) option, which requires a user text file, but the file specified in File-Name does not have a .txt extension. Please ensure the file is a text file and has the text file extension (.txt).
'File-Name' must be a .shp file. You selected the User Population (shp) option, which requires a user shapefile, but the file specified in File-Name does not have a .shp extension. Please ensure the file is a shapefile and has the shapefile extension (.shp).

A 'DIAM-Attribute-Name' must be specified. You selected the User Population (shp) option, which requires a DIAM-Attribute-Name, but the DIAM-Attribute-Name field is empty. Please provide the name of the shapefile diameter attribute in this field.
'File-Name' must be a .csv file. You selected the User Population (csv) option, which requires a user csv file, but the file specified in File-Name does not have a .csv extension. Please ensure the file is a csv file and has the csv file extension (.csv).
'Site-Width' must be a positive non-zero number. You provided a non-zero (negative or zero) site width. Please provide a positive site width measured in meters (m).
'Site-Height' must be a positive non-zero number. You provided a non-zero (negative or zero) site height. Please provide a positive site height measured in meters (m).
'Patch-Area' must be a positive non-zero number. You provided a non-zero (negative or zero) patch area. Please provide a positive patch area measured in meters (m).

The site cannot be set up. Please review the file formatting / placement guidelines. You most likely received this error because the data file is formatted incorrectly or is not located in the Model > User folder. The data file should be placed in the User folder and should not have
any headers, commas, spaces, or other symbols. Review this manual to ensure proper formatting.

9.5 User Data Upload Examples

There are example user files in the Model > User folder to help illustrate the user data upload process. The folder contains the files necessary to set up the SE Pará (204ha) population using each of the three user data upload methodologies.

The files and inputs required for each methodology are listed below. If you have any questions about formatting, look to these files as templates. If you have questions about the inputs, look to the information below and the DATA UPLOAD figures presented above (sections 9.1, 9.2 \& 9.3).

Data Upload Type	File-Name	DIAM- Attribute-Name	Site- Width	Site- Height	Patch- Area
Spatial: TXT File	mara-204-tree-data.txt		1216.1	1712.4	1.0
Spatial: SHP File mara-204-tree-data.shp* DIAM2004 1216.1	1712.4	1.0			
Non-Spatial: CSV File	mara-204-tree-data.csv		1216.1	1712.4	1.0

*The .dbf file is associated with this shapefile and is necessary for data upload using this method.

10 EXPORT SIMULATION RESULTS Export Results

The monitors, plots, and landscape features provide a means for observing simulation results in real-time, but these results are not stored in memory or elegantly summarized for the user. Simulation end results can be permanently stored and easily reviewed by pressing the Export Results button. The resulting file summarizes a given simulation by showing the model settings, harvest parameters, and initial population, final population, and harvest statistics.

Simulation results must be saved as a text (.txt) file. These files can be named and placed anywhere on your computer. It may be useful to name your file based on the simulated parameters; for example, Marajoara-60cm-20rr-5md-30yr-1 indicates the population simulated, while $c m, r r, m d$, and $y r$ indicate the simulated minimum diameter cutting limit, retention rate, minimum density, and cutting cycle, respectively, and l indicates the simulation number.

Results text files can be opened with Notepad on Windows and TextEdit on Mac OS X. If you are missing either of these programs (they come preinstalled on your computer), free alternatives are available online. For Windows users, Another Notepad is a simple and free text editor: http://www.pc-shareware.com/anotepad.htm. For Mac users, Plain Text Editor is also a simple and free text editor: http://www.macupdate.com/app/mac/8724/plain-text-editor.

SIMULATION RESULTS, the head of the Results file, summarizes the model settings used in the completed simulation. This section lists: (1) the name of the field site (the data file name, if running a user population); (2) the area of the field site in hectares; (3) whether logging was turned on or off; and (4) the number of harvest cycles, the simulation time limit in years, and the actual time run in years.

The second section of the Results file reminds the user that additional simulations are necessary to validate the results of a single simulation. This can be achieved by repeating the same singlerun simulation or by running a BehaviorSpace experiment (section 11) as described below.

The lines following these reminders define Total Abundance/Density and Commercial Abundance/Density as referred to in the Results file statistics. In all cases, Total Abundance/Density refers to trees $\geq 20 \mathrm{~cm}$ diameter. Commercial Abundance/Density refers to trees \geq the minimum diameter cutting limit designated on the model interface.

The next section, LOGGING PARAMETERS, only appears if logging was turned on during the simulation and reports the logging parameter values used during the simulation. If the logging parameters are changed mid-simulation, only the end parameter values will be displayed.

YEAR 0 STATISTICS and YEAR XXX STATISTICS report the total abundance and density and commercial abundance, density, and volume of trees in the initial and final years of the simulation. The year value in the YEAR XXX STATISTICS heading will be the final year of simulation, that is, a simulation lasting 100 years will read YEAR 100 STATISTICS.

The HARVEST STATISTICS section is only displayed if logging is turned on during the simulation. This section summarizes the number of harvests, number of trees logged, and volume of trees logged during the simulation runtime. The section also summarizes the results of each harvest by displaying the year and productivity of successive harvest events.

Finally, the SIZE DISTRIBUTION (YEAR XXX) section summarizes the size distribution of trees $\geq 20 \mathrm{~cm}$ diameter in the final year of simulation. The largest tree is always contained within the second largest size class, that is, the final size class will always contain 0 trees. The number of size classes changes based on the size distribution of trees in the final year but the size class increment is always 10 cm diameter.

11 SIMULATION EXPERIMENTS: BehaviorSpace

The NetLogo BehaviorSpace tool allows users to easily run repeat simulations of the Big-Leaf Mahogany Growth \& Yield Model using either constant or systematically varied harvest parameter settings. The BehaviorSpace tool thus enables users to examine the outcomes of multiple harvest regimes with statistical confidence (repeat simulations) and methodological ease (automated process). Results from these simulations are then tabulated into a spreadsheet for analysis.

The following section explains how to run, modify, and analyze the six built-in BehaviorSpace experiments.

Step 1. Define Model Parameters

BehaviorSpace experiments will systematically vary the harvest parameters but you must define the other model settings before running an experiment. Define Populations, Logging, and Time on the model interface according to the directions above (section 6.2). If you intend to simulate one or more harvest regimes, be sure that the Logging switch is turned on.

Step 2. Open BehaviorSpace

Open the BehaviorSpace tool by selecting Tools > BehaviorSpace in the NetLogo menu. The BehaviorSpace window will open in the center of your screen:

Seven built-in experiments are listed in this window. Resize the window to view the full experiment names by grabbing the triangle in the bottom-right corner. The function of each experiment is summarized below. The buttons in the BehaviorSpace window behave as follows:

New	creates a new BehaviorSpace experiment
Edit	opens the selected BehaviorSpace experiment for editing
Duplicate	duplicates the selected BehaviorSpace experiment
Delete	deletes the selected BehaviorSpace experiment
Run	runs the selected BehaviorSpace experiment

Before running an experiment, you should select the Edit option and familiarize yourself with the experiment's settings. The modification of these settings and the creation of new experiments are discussed more below (section 12.2).

Step 3. Choose a BehaviorSpace Experiment

Choose a baseline BehaviorSpace experiment to match your experimental goals:
The Population Growth: No Logging experiment simulates the initial population without logging in order to examine the natural projection of the population.

The Population Growth \& Productivity: Standard Logging experiment simulates the initial population under current (default) harvest standards in order to examine the projection of the initial population following these legal guidelines.

The four Population Growth \& Productivity: Harvest Parameter experiments examine the effect of each harvest parameter on population growth and harvest productivity by varying a single harvest parameter and keeping the other parameters constant.

The final Population Growth \& Productivity: Custom Logging experiment provides a place for the user to define a single custom harvest regime to simulate the recovery and productivity of the initial population under these guidelines.

Step 4. Examine \& Modify a BehaviorSpace Experiment

Select the chosen baseline experiment in the BehaviorSpace window by pressing the name of the experiment. The name should now be highlighted in blue. Press Edit to edit the details of the experiment. The Experiment window, shown on the next page, will open in the center of your screen.

Resize the window as needed by grabbing the triangle in the bottom-right corner. The window displayed on the next page describes the Population Growth \& Productivity: Diameter Experiment, as listed in the Experiment name field at the top of the window.

Experiment Variables

The second field lists the variables to be examined during the BehaviorSpace simulation. In this experiment, logging is turned permanently on (["logging" true]) and the minimum-diameter is varied from 40 cm to 90 cm by increments of 10 cm (i.e., $40,50,60,70,80,90 \mathrm{~cm}$). All other harvest parameters and model settings will remain constant based on the current interface settings.

The variables section has a similar structure in each experiment. Population Growth: No Logging is the only experiment with logging turned off because it is designed to monitor populations under natural conditions. Population Growth \& Productivity: Standard Logging,
unlike the other experiments, permanently sets the four harvest parameters because it is designed to monitor populations under current legal management practices for mahogany.

The other four Population Growth \& Productivity experiments (Diameter, Retention, Density, Cutting Cycle) vary each harvest parameter according to the syntax described above: ["harvest-parameter" [start increment end]]. To examine a different range or resolution of parameter values, change the start, increment, and end values according to preference.

Alternatively, values to be tested can be listed using the following syntax: ["harvest-parameter" value value value ...]. For example, ["minimum-diameter" 50556075 80] would simulate the non-incremental minimum diameters of $50,55,60,75$, and 80 cm . MAKE SURE YOU USE THE BRACKETS EXACTLY AS SPECIFIED.

The Repetitions field specifies the number of simulations performed for each harvest parameter value. The Population Growth \& Productivity: Diameter Experiment simulates six minimum diameter values ($40,50,60,70,80$ and 90 cm), each 100 times, for a total of 600 simulations. Type a new number into the Repetitions field to increase or decrease the simulation sample size.

Experiment Reporters

The Measure runs using these reporters field designates the reporters, or measurements, used to evaluate the simulated population. The reporters for the Diameter Experiment are repeated in all other experiments (except Population Growth: No Logging which does not require harvest reporters) as measures of population growth and harvest productivity:
count trees
count trees with [diameter $>=20$]
count trees with [diameter $>=$ minimum-diameter]
sum annual-harvest-number
sum annual-harvest-volume
annual-harvest-number
annual-harvest-volume
total tree abundance
abundance of trees $>=20 \mathrm{~cm}$ diameter abundance of commercial-sized trees total number of logged trees total volume of logged trees lists number of logged trees in each harvest lists volume of logged trees in each harvest

If you would like to remove a reporter from this list, simply delete it from the box. If you would like to add or modify a reporter, refer to the sections below (sections $12.1 \& 12.2$). Note: a method for reporting harvest number and volume values in individual columns is detailed in section 12.2.

The reporters will be measured every year (time step) if the Measure runs at every step option is selected. This would generate an unnecessary amount of data so the default setting leaves this option unchecked. If you would like to track every year of every simulation, select this option.

Experiment Run Settings

The Setup commands and Go commands fields correspond to the commands in the model procedure responsible for setting and running the model. DO NOT CHANGE THESE FIELDS.

The Stop condition and Time limit fields are left purposefully empty because both stop conditions and time limits are already built into the model. It would be redundant to specify them again here. DO NOT ENTER ANY VALUES OR COMMANDS IN THESE FIELDS.

The Final commands field can be used to export the model landscape, plots, and world at the end of each model run. The export-view command exports the model landscape to an external
image file. The export-plot and export-all-plots commands export either a specific plot or all plots to an external .csv file. The export-world command exports the values of all variables, both built-in and user-defined, including all observer, turtle, and patch variables and the plot contents. The commands for exporting each feature are listed below:
export-view (word "Results/" "view " date-and-time ".jpg")
export-plot "Tree Abundance" (word "Results/" "Tree Abundance " date-and-time ".csv")
export-all-plots (word "Results/" "plots " date-and-time ".csv")
export-world (word "Results/" "world " date-and-time ".csv")
The exported files are all written to the Model > Results folder. Each file type is saved with a common identifier (i.e., 'view', 'plots', 'world') but the date and time extension varies between runs in order to prevent file overwriting. The view image can be saved with any image extension (.jpg, .png, .bmp, .tif, etc) but the plots and world files must be saved with the .csv extension.

Step 5. Run BehaviorSpace Experiment
Run the chosen experiment by selecting the experiment in the BehaviorSpace window and pressing the Run button. The Run Options window, shown on the next page, will open in the center of your screen.

Check the Table output option and leave the Spreadsheet output option unchecked. Enter 2 into the Simultaneous runs in parallel field. The Table output option creates a more analysisfriendly output and the Simultaneous runs in parallel option $=2$ maximizes run efficiency.

Press OK and save the output file anywhere on your computer. The output file must be saved as a .csv or .xls file. INCLUDE THE .CSV OR .XLS FILE EXTENSION IN THE FILE NAME.

Step 6. Determine Run Settings
After saving the output file, the Running Experiment window will open in the center of your screen. This window graphs the population metrics measured during the experiment and tracks the progress of the experiment by reporting the number of completed steps and elapsed time.

Run \#4 of 600, step \#53
Total elapsed time: 0:04:06
Logging = true
minimum-diameter $=40$

Update view

Update plots and monitors

Abort

The graph will only be shown when measuring every time step; therefore, you will only see this graph if you change the default experiment settings. The graph displays the measure of each population metric over time, where the Behavior axis describes each metric. The metrics are color-coded according to the legend on the right.

The output window below the graph tracks the experiment progress. The window reports the number of completed runs and the number of completed steps, where each step represents a year. The total elapsed time is also reported. The experiments take some time to run, so please be patient.

The pace of the experiment can be accelerated by sliding the blue circle to the right, from normal speed to faster speed. Turning off the visuals will also reduce processing time: uncheck Update view and Update plots and monitors to further accelerate the experiment run time.

Pressing Abort will end the BehaviorSpace experiment. It is not possible to resume an aborted experiment. To continue a BehaviorSpace experiment after pressing Abort, you will need to start again from the beginning.

Step 7. Format Data Output

The Running Experiment window will close when the experiment is completed, returning the BehaviorSpace window to the center of the screen. Close the window and browse to the experiment results file. The head of the experiment results file should look like this:

\bigcirc	A	B	C	D
1	BehaviorSpace results (NetLogo 4.1.1)			
2	Jimmy Model 3.1.nlogo			
3	Population Growth \& Productivity: Standard Logging			
4	12/26/2010 09:25:53:079-0500			
5	min-pxcor	max-pxcor	min-pycor	max-pycor
6	-61	61	-86	86

This section of the file records basic information about the simulation experiment including: (1) the version of NetLogo run; (2) the name of the model; (3) the name of the experiment; (4) the date and time the experiment was run; and (5) the dimensions of the field site. Numbers in the above list correspond to the line number in the experiment results file.

The field site dimensions are reported in terms of NetLogo patches but can be converted to meters by multiplying each value by 10 meters. The length of the X -axis of the site is the sum of minimum (min-pxcor) and maximum (max-pxcor) X-coordinate. The length of the Y-axis of the site is the sum of minimum (min-pycor) and maximum (max-pycor) Y-coordinate.

Additionally, we recommend inserting a few lines under the header to record additional information about the simulation experiment. For recordkeeping, it would be useful to record the field site name, area, and dimensions, initial tree abundance and volume, and harvest years.

The rows below the header contain the data from the simulation experiment. The headings can be rewritten for increased clarity based on the following recommendations or on user preference:

```
[run number]
Logging
minimum-diameter
retention-rate
minimum-density
cutting-cycle
[step]
count trees
count trees with [diameter>= 20]
count trees with [diameter >= minimum-diameter]
sum annual-harvest-number
sum annual-harvest-volume
annual-harvest-number
annual-harvest-volume
Run
```

Logging
minimum-diameter
retention-rate
minimum-density
cutting-cycle
[step]
count trees
count trees with [diameter $>=20]$
count trees with [diameter $>=$ minimum-diameter]
sum annual-harvest-number
sum annual-harvest-volume
annual-harvest-number
annual-harvest-volume

Run
Logging (on/off)
Minimum Diameter (cm)
Retention Rate (\%)
Minimum Density (\# / 100ha)
Cutting Cycle (yr)
Time (yr)
\# Trees
\# Trees ($>20 \mathrm{~cm}$ diameter)
\# Commercial Trees
\# Logged Trees
Logged Tree Volume (m^{3})
Harvest Number List (\# / yr)
Harvest Volume List ($\mathrm{m}^{3} / \mathrm{yr}$)

If you would like to query the model for additional information, please refer to Command Line and BehaviorSpace Experiments below (sections 12.1 \& 12.2).

Step 8. Analyze Simulation Data

Before analyzing the data, you may be interested in adding a few data columns, such as total density, commercial density, and harvest year statistics. The abundance (count) values can be converted to density values using the following formula:

$$
\text { Density }=\text { Abundance } / \text { Site Area } * 100
$$

where site area is measured in hectares (ha) and density is measured in trees per 100 hectares.
The harvest number and volume lists can be broken into individual years using the Text to Columns feature available in most spreadsheet programs. First, highlight the two list columns and use the Find and Replace feature to remove the brackets ('[') from the cells. Then, use the Text to Columns feature, with data delimited by spaces, to convert the text data to column data. This will better facilitate the examination of harvest productivity across time.

The post-processing of the harvest value lists can be avoided by using the directions in Harvest List Reporters of BehaviorSpace Experiments (section 12.2) to report the harvest list values in individual columns as opposed to single column list. Label these new columns accordingly.

The analysis of the experiment data should be performed according to your familiarity with statistics. A thorough review of statistical analysis is beyond the scope of this User Manual; however, simple statistics, such as average and standard deviation, should suffice most of the time. For example, a comparison of the average final commercial density to the initial commercial density is a simple but powerful statistical method.

Similarly, calculating the average logged volume from each harvest year provides a simple but powerful summary of harvest productivity over time under different harvest regimes. A standard deviation of these averages would provide an estimate of confidence. The BehaviorSpace experiments provide a large sample size and these simple statistics can convey much information about population growth and harvest productivity.

12 ADVANCED USERS \& NETLOGO RESOURCES

12.1 Command Line Code

The following section provides an introduction to using the Command Center to query the landscape for information not displayed in the population monitors or plots or harvest monitors.

Commands are entered in the command line window, the small window labeled observer>, shown on the next page. The results of the commands are printed in the larger output window labeled Command Center.

```
Command Center **/Clear
observer> show count trees
observer: 143
observer> show count trees with [diameter >= 60]
observer: 87
observer> show sum [volume] of trees with [diameter >= 60]
```

Copy and paste any of the italicized commands listed below into the command line window. Press Return/Enter to run the command. ALWAYS LEAVE THE COMMAND LINE IN OBSERVER MODE. DO NOT SUBMIT COMMANDS IN TURTLES, PATCHES, OR LINKS MODES.

You can access previous commands using the history popup menu, the small downward pointing triangle to the right of the command line window. Press the triangle to see a menu of previously entered commands. Alternatively, you can access previous commands with the $U P$ and $D O W N$ keys on the computer keyboard, as long as the cursor is in the command line window.

Pressing the Clear button in the upper-right corner of the Command Center window will erase the contents of the output window. Additionally, the Command Center can be resized by grabbing and moving the gray bar at the top of the Command Center window.

The following is a list of commands that may be useful to your analysis. For sections with bold italicized commands (i.e., grow-trees, kill-trees, log-trees, etc.), you must enter the bold italicized command before entering the other commands. The commands can be modified using the statements at the bottom of the summary to more powerfully query the model results.

Population Statistics

Total Tree Abundance
Commercial Tree Abundance
First-Year-Seedling Abundance
Total Tree Volume (m^{3})
Maximum Tree Basal Area (cm^{2})
Median Small Tree Diameter (cm)
show count trees
show count trees with [diameter $>=60]$
show count trees with [seedling? = true]
show sum [volume] of trees
show max [basal-area] of trees
show median [diameter] of trees with [diameter $<=20]$
Initial Population Abundance
Initial Population Density
Initial Commercial Abundance
Initial Commercial Density
show y0-tot-density * site-area / 100
show y0-tot-density
show y0-comm-density * site-area / 100
show y0-comm-density
Commercial Density (trees / 100ha) show count trees with [diameter $>=60] /$ site-area $* 100$

Field Site Statistics

Field Site Area (m^{2})
Field Site Area (ha)
Field Site Area $\left(\mathrm{km}^{2}\right)$
Field Site Width (m)
Field Site Width (km)
Field Site Height (m)
Growth Statistics: grow-trees
Specific Tree Growth Rate (cm/yr)
Median Tree Growth Rate ($\mathrm{cm} / \mathrm{yr}$)
Fastest Growing Tree Diameter (cm)
Fastest Growing Tree (tree \#)
Smallest Basal Area Tree (tree \#)
Large DBH Trees (tree \#s)
show site-area * 10000
show site-area
show site-area / 100
show world-width * 10
show world-width * 10 / 1000
show world-height * 10
show [growth-rate] of tree 17
show median [growth-rate] of trees
show [diameter] of trees with-max [growth-rate]
show [who] of trees with-max [growth-rate]
show [who] of trees with-min [basal-area]
show [who] of trees with [dbh > median [dbh] of trees]

Harvest Statistics: log-trees

Last Harvest: Number of Logged Trees
Last Harvest: Total Logged Volume (m^{3})
Last Harvest: Largest Logged Tree Volume (m^{3})
show length cur-logged-volume show sum cur-logged-volume show max cur-logged-volume

All Harvests: Number of Logged Trees
All Harvests: Total Logged Volume (m^{3})
All Harvests: Largest Logged Tree Volume (m^{3})
Number of Trees Logged in Harvest Number X Volume of Trees Logged in Harvest Number X
show length tot-logged-volume
show sum tot-logged-volume
show max tot-logged-volume
show item ((X)-1) annual-harvest-number show item ($(X)-1$) annual-harvest-volume
tot-logged-volume $=$ a list of the volumes of trees logged during all previous harvests cur-logged-volume $=$ a list of the volumes of trees logged during the most recent harvests annual-harvest-number $=$ a list of the number of trees logged during each harvest year annual-harvest-volume $=$ a list of the volume of trees logged during each harvest year

Mortality Statistics: kill-trees

Specific Tree Mortality Probability
Median Tree Mortality Probability
Live Tree Mortality Probabilities
Dead Tree Abundance
Large Dead Tree Abundance
Dead Tree Diameter List (cm)
show [mort-rate] of tree 17
show median [mort-rate] of trees
show [mort-rate] of trees with [alive? $=$ true]
show count trees with [alive? = false]
show count trees with [alive $?=$ false and diameter $>=60$] show [diameter] of trees with [alive? = false]

Disturbance Statistics: disturb-trees

Landscape Disturbance (\%) show count patches with [disturbance? = true] / count patches Landscape Sweetspot (\%) show count patches with [sweetspot? $=$ true] / count patches

Landscape Disturbance (ha) show count patches with [disturbance? $=$ true] * $100 / 10000$
Landscape Sweetspot (ha) show count patches with [sweetspot? $=$ true] $* 100 / 10000$

Reproduction Statistics: reproduce-trees

Reproductive Tree Abundance show count trees with [reproduce? = true]
Mean Reproductive Tree Diameter show mean [diameter] of trees with [reproduce? = true]
Max. Large Tree Fruit Probability Median Fruit Production

Potential Seed Production
Actual Seed Production
show max [fruit-prob] of trees with [diameter $<=30]$ show median [num-fruit] of trees with [reproduce? = true]
show floor (sum [num-fruit] of trees * seeds-per-fruit) show sum [surv-seeds] of trees

Disturbance / Seedling Datasets

Median Disturbance Area (m²)
Disturbance Dataset Sample Size
View Disturbance Dataset
show median disturbance-dataset
show length disturbance-dataset
Mean First-Year-Seedling Diameter show mean seed-diam-list
disturbance-dataset $=\mathrm{a}$ list of the disturbance area sizes $\left(\mathrm{m}^{2}\right)$ observed in the field site seed-diam-list $=\mathrm{a}$ list of first-year-seedling diameters (cm) observed in the field
*The seedling diameter and disturbance size data distributions can be viewed in the Model > Data folder. The seedling diameter distribution file is called seedling-data.csv while the disturbance size distribution file is called gap-data.csv.

Export Data

Export Landscape Image (.jpg)
Export Interface Image (.jpg)
Export Output Text (.txt)
Export Single Plot Values (.csv)
Export All Plot Values (.csv)
Export All Variables (.csv)
export-view user-new-file
export-interface user-new-file
export-output user-new-file
export-plot "Tree Abundance" user-new-file
export-all-plots user-new-file
export-world user-new-file
*Name and place the exported file anywhere on your computer. Include the file extension listed in the parenthesis following each export method.

Available Statements

Math Statements
Logic Statements
Statistic Statements
Patch Variables
$<,>,=,!=,<=,>=$
true, false
max, min, mean, median, modes, with-min, with-max disturbance?, sweetspot?

These statements can be substituted for similar statement types in the italicized commands provided above. For example, any statistical statement (max, min, mean, etc.) can replace a statistical statement in the provided commands. Likewise, any tree variable (alive?, diameter, mort-rate, surv-seeds, etc.) can replace a tree variable in the provided commands.

12.2 Modifying BehaviorSpace Experiments

SIMULATION EXPERIMENTS: BehaviorSpace (section 11) provides a thorough review of the NetLogo BehaviorSpace feature. If you are interested in personalizing the built-in experiments further, or in creating your own experiments entirely, please review the section below.

Varying Multiple Parameters

Pre-defined BehaviorSpace experiments are designed to test either a single harvest regime or to test the sensitivity of population growth \& yield to a single harvest parameter. It is also possible to examine multiple harvest regimes within a single simulation experiment. This can be achieved by varying more than one harvest parameter in the BehaviorSpace variable settings.

For example, rather than only varying minimum-diameter, both minimum-diameter and retention-rate could be varied using the following code:
["minimum-diameter" [40 10 80]]
["retention-rate" [10 5 30]]
The BehaviorSpace experiment would simulate each combination of minimum-diameter and retention-rate for the specified number of repetitions. In other words, each minimum diameter cutting limit, beginning with 40 cm and ending with 80 cm at $10-\mathrm{cm}$ increments, would be simulated with each retention rate, beginning with 10% and ending with 30% at 5% increments.

This design can be implemented with all four harvest parameters to simulate the outcomes of multiple harvest regimes. Although it generates many runs, and therefore requires a lot of processing time, it collects the results in a single spreadsheet for quick analysis.

Adding New Reporters

The built-in experiments can also be personalized by adding new reporters or stop conditions to the experiment settings. New reporters can be added from those listed in Command Line Code (section 12.1) although reporters requiring bold italicized commands will not generate meaningful data since BehaviorSpace reporters are measured at the end of each run.

Copy and paste the Command Line reporters (exclude show from the reporter) into the BehaviorSpace reporter settings. For example, rather than pasting show median [diameter] of
trees with [diameter $<=20$], only paste median [diameter] of trees with [diameter $<=20$]. These reporters will provide even more information when running the experiments.

Harvest List Reporters

The annual-harvest-number and annual-harvest-volume reporters prints a list of harvest values in two columns as [item ite $_{11}$ item $_{h 2}$ item $_{h 3}$ item $_{h 4} \ldots$] where each item $_{h x}$ represents the harvest value for harvest number x. If you prefer that each item receive its own column, you must replace the annual-harvest-volume reporter, for example, with the following reporters:
item 0 annual-harvest-volume
item 1 annual-harvest-volume
item 2 annual-harvest-volume
item ($1-X$) annual-harvest-volume
volume of logged trees in harvest 1
volume of logged trees in harvest 2
volume of logged trees in harvest 3 volume of logged trees in harvest X

The item code numbers items in a list from zero onwards so item 0 is harvest 1 , item 1 is harvest 2 , item 3 is harvest 4 , etc. You must enter an item reporter for each expected harvest. You can determine the expected number of harvests using the following formula:
floor (Time Limit / Cutting Cycle) +1
where the 'floor' of a number of harvests is the largest integer less than or equal to the number.

Adding Stop Conditions

If you are interested in including stop conditions different from the defaults, which stop simulations after the time limit or when all trees die or are harvested, whichever happens first, you can enter new conditions in the Stop condition prompt. The model stops when conditions become true. For example, if you want to halt simulations after the first harvest, you would enter: length annual-harvest-number >0. Alternatively, if you want to halt simulations when commercial abundance falls below a certain threshold, you would enter: count trees with [diameter $>=$ minimum-diameter] $<=10$.

More information on BehaviorSpace experiments can be found on the NetLogo website or in the NetLogo User Manual. Please see NetLogo Resources (section 12.4) below.

12.3 Model Procedure Code

This section provides insight into both modifying and understanding the underlying model code.
A fully annotated version of the model code is available in APPENDIX D: MODEL CODE (page 57) and in the Procedures tab of the NetLogo interface. A close review of the code will help you better understand how the model works. NetLogo Resources (section 12.4) provides additional information towards understanding the code.

Procedure Summary

The gray text, preceded by repeat semi-colons (;;), represents comments provided to guide you through the model code. This text is not read by the computer and is included only to explain the functional model code. The head of the model code provides basic information about the model: the title, the authors, the funders, the landscape dimensions, etc.

The first section of real code, EXTENSIONS, BREEDS, AND VARIABLES, identifies code extensions and variables used throughout the model. Code extensions activate code types not included in the default language as well as variables used throughout the model to modify trees and the landscape. Global variables are constant values used to make these modifications; these are the only variables we suggest that you modify, as explained below.

MODEL SETUP, the second section of code, sets up the model by checking for errors, setting variable values, drawing the landscape, setting the plots and monitors, and establishing the initial population on the landscape. These steps happen in discrete sections of code known as procedures, bounded by the keywords to and end. Each step is explained thoroughly in the model code.

The third and final section of code, RUN MODEL, successively grows, kills, disturbs, and reproduces trees on the landscape. This section also contains the code for exporting data and resetting the trees and landscape for the next year of simulation. These steps are also contained within procedures and each procedure is extensively commented in the model code.

Procedures - In the Procedures tab of the NetLogo interface, use the Procedures menu to view a list of model procedures and zoom to a specific procedure.

Procedures are color-coded according to the following scheme: keywords are green; constants are orange; comments are gray; built-in NetLogo commands are blue; primitive reporters are purple; and everything else is black.

Modifying Global Variables

It is possible to modify the growth \& yield model using alternative data to calculate alternative regressions, but explaining this process is beyond the scope of this User Manual. If you intend to modify model functions, we recommend that you modify only global variables (model constants). Global variables are set in the first section of code and are briefly summarized below.

Variable	Value	Definition
prop-dist	0.026	the proportion of the landscape disturbed each year
seed-radius	5.382	the radius of a 0.91-ha seed shadow in patches (1 patch $=10 \mathrm{~m})$
max-num-fruit	750	the maximum number of fruit per tree
seeds-per-fruit	42.4	the average number of viable seeds per fruit
surv-prob	0.085	the proportion of seeds surviving to become first-year seedlings

To change the value of any of these constants, simply replace the old value with a new one. Remember to rename the new model when saving to avoid overwriting the original model. OVERWRITING THE ORIGINAL MODEL WILL FORCE YOU TO REINSTALL THE MODEL.

The ability to redefine global variables is useful for personalizing the model constants to your field site. For example, if you think your site experiences more disturbance, increase the proportion of landscape disturbance (prop-dist) value. Similarly, if you think the trees in your site have a smaller maximum fruit output (max-num-fruit) or produce fewer viable seeds per fruit (seeds-per-fruit), you can reduce these values.

12.4 NetLogo Resources

NetLogo is a multi-agent programmable modeling environment developed by Uri Wilensky at the Center for Connected Learning and Computer-Based Modeling (Wilensky 1999). If you are interested in learning more about the software, please visit the NetLogo website:
http://ccl.northwestern.edu/netlogo/index.shtml
The website includes resources for learning NetLogo including a User Manual, online dictionary, example models, and publications. The NetLogo Users Group, an online community of NetLogo users, is also available for help and advice: http://groups.yahoo.com/group/netlogo-users/

The NetLogo software comes with a Models Library, available in Files > Models Library in the NetLogo menu. These models can be used as examples or templates for learning the NetLogo language, modifying the growth \& yield model, or creating new NetLogo models.

NetLogo 4.1.2, the version used to run the Big-Leaf Mahogany Growth \& Yield Model, can be downloaded here: http://ccl.northwestern.edu/netlogo/4.1.2/. The most recent version of the software can be downloaded here: http://ccl.northwestern.edu/netlogo/download.shtml

13 LIMITATIONS \& CONSIDERATIONS

The Big-Leaf Mahogany Growth \& Yield Model functions are derived from demographic data collected annually from 1995-2009 for nearly 600 mahogany trees and many thousands of seedlings, saplings and poles at multiple field sites in southeast Pará and Acre. This comprehensive dataset allows for robust predictions of mahogany population growth \& yield outcomes over reasonable time periods. Even so, it is important to acknowledge model limitations that constrain the accuracy and precision of projected outcomes.

First, due to the scarcity of natural regeneration in gap environments, simulated seedling/sapling mortality and growth rates in large gaps are based on data from experimental outplantings across light gradients in large clearings initiated at Marajoara in 1995. These data present optimistic estimates of juvenile performance due to manual removal of competing vines and secondary vegetation during the experiments' initial three years.

Second, population outcomes are highly sensitive to disturbance, and the model's disturbance function is derived from data collected during a single year at Marajoara. Because disturbance regimes vary widely across time and space, this data only partially represents the temporal and spatial extent of gap-forming disturbance events necessary for mahogany regeneration and recruitment to adult size.

Finally, the model does not formally incorporate density-dependent population regulation, which may allow overestimation of population growth \& yield. Steniscadia poliophaea, a nocturnal specialist moth, preys more regularly and intensely upon mahogany seedlings in close proximity to large fruiting trees or groups of clumped adults. The population-level influence of this density-dependent seedling predator could be strong if population growth is sensitive to observed reductions in seedling survival and growth. As well, impacts on population growth of the mahogany shootborer, Hypsipyla grandella, cannot be directly accounted for in the model due to lack of data addressing this issue. Density-dependent seedling mortality has been shown to reduce population growth rates in other neotropical trees.

14 FUTURE MODIFICATIONS

We are interested in using the recently published R Extension for NetLogo (Thiele \& Grimm, in press: http://netlogo-r-ext.berlios.de/) to increase the robustness of the model regressions, the potential for in-model data analysis, and the functionality of the Export Results command.

We also plan to make the model run faster by improving the processing efficiency of the disturbance and reproduction functions. Similarly, we plan to include more built-in example populations and to streamline the user data upload process.

The online version of the model will be continually updated as the computer version of the model becomes more compatible with the web server and applet export services.

Future versions of the model may also be improved according to user feedback and recommendations. Please take the user survey listed on our website: http://www.swietking.org

15 ACKNOWLEDGEMENTS

Principal funding support for this long-term research program has been provided by the USDA Forest Service's International Institute of Tropical Forestry, and by the ITTO-CITES Program for Implementing CITES Listings of Tropical Timber Species (see page 2). At IITF, Ariel Lugo's vision and commitment to this research program made it possible. This research has additionally been supported by a broad spectrum of public and private sources, including the USDA Forest Service's International Programs, USAID Brazil, the Charles A. and Anne Morrow Lindbergh Foundation, and the International Tropical Timber Organization's Fellowship Programme. In Acre, additional funding support was provided by the Brazilian Ministry of the Environment (MMA) and WWF Brazil.

In southeast Pará, generous logistical support has been provided by the Marajoara field site owners, Sr. Claudiomar Vicente Kehrnvald (current) and Sr. Honorato Babinski (previous/ Serraria Marajoara Ltda). To both we extend our sincere thanks and gratitude. Additional logistical support in this region was provided by Peracchi Ltda and Conservation InternationalBrazil. In Acre, logistical support was provided by the State Government of Acre's Secretariat for Forestry \& Extractivism (SEFE), the Technology Foundation for the State of Acre (FUNTAC), and the forest products companies Acre Brasil Verde and Laminados Triunfo Ltda.

We thank the Brazilian Ministry of Science and Technology (CNPq) for permission to conduct fieldwork, and the Instituto do Homem e Meio Ambiente da Amazônia (IMAZON) for providing institutional affiliation and collegial support, especially Edson Vidal, Paulo Barreto, and Adalberto Veríssimo.

We thank Marco Lentini and Johan Zweede at the Instituto Floresta Tropical (IFT) for institutional support and expertise, and Mark Schulze for keeping field studies on course. At Yale University, Mark Ashton and F. Herbert Bormann guided this program's development. In southeast Pará, Jurandir Galvão was instrumental in setting up field studies and training field assistants for long-term studies. Mark Cochrane provided the original geospatial data that mapping studies were built upon. In Acre, nothing would have been possible without Frank Pantoja's unflagging commitment and determination. In the field, we thank Miguel Alves de Jesus, Valdemir Ribeiro da Cruz, Maria Nascimento Rodrigues, Amildo Alves de Jesus, Ruberval Rodrigues Vitorino, Manoel Rodrigues Vitorino, and Antonio Barbosa Lopes for their dedication re-censusing trees and experiments. Additional contributions in the field were made by Denis Valle, Marcelo Galdino, Simone Bauch, and field assistants too numerous to list here. Ted Gullison kindly provided supporting data from field sites in Bolivia.

16 REFERENCES \& SUGGESTED READING

Electronic copies of journal references are available upon request to jgrogan@crocker.com or james.grogan@yale.edu.

André T, Lemes MR, Grogan J \& Gribel R (2008) Post-logging loss of genetic diversity in a mahogany (Swietenia macrophylla King) population in Brazilian Amazonia. Forest Ecology \& Management 255: 340-345.

Cornelius JP (2001) The effectiveness of pruning in mitigating Hypsipyla grandella attack on young mahogany (Swietenia macrophylla King) trees. Forest Ecology and Management 148: 287-289.

Cornelius JP, Navarro CM, Wightman KE \& Ward SE (2005) Is mahogany dysgenically selected? Environmental Conservation 32: 129-139.

Brown N, Jennings S \& Clements T (2003) The ecology, silviculture and biogeography of mahogany (Swietenia macrophylla): a review of the evidence. Perspectives in Plant Ecology, Evolution and Systematics 6: 37-49.

Grogan J \& Schulze M (in review) The Impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in southeastern Amazonia, Brazil. Biotropica.

Grogan J, Peña-Claros M \& Günter S (2011) Managing natural populations of big-leaf mahogany. In: Günter S, Stimm B, Weber M, Mosandl R (eds.), Silviculture in the Tropics. Institute of Silviculture, Technische Universität München, Munich, Germany.

Grogan J, Blundell AG, Landis RM, Youatt A, Gullison RE, Martinez M, Kometter RF, Lentini M \& Rice RE (2010) Over-harvesting driven by consumer demand leads to population decline: big-leaf mahogany in South America. Conservation Letters 3: 12-20.

Grogan J, Schulze M \& Galvão J (2010) Survival, growth and reproduction by big-leaf mahogany (Swietenia macrophylla) in open clearing vs. forested conditions in Brazil. New Forests 40: 335-347.

Grogan J \& Landis RM (2009) Growth history and crown vine coverage are principal factors influencing growth and mortality rates of big-leaf mahogany Swietenia macrophylla in Brazil. Journal of Applied Ecology 46: 12831291.

Grogan J \& Schulze M (2008) Estimating the number of trees and forest area necessary to supply internationally traded volumes of big-leaf mahogany (Swietenia macrophylla) in Amazonia. Environmental Conservation 35: 26-35.

Grogan J, Jennings SB, Landis RM, Schulze M, Baima AMV, Lopes JCA, Norghauer JM, Oliveira LR, Pantoja F, Pinto D, Silva JNM, Vidal E \& Zimmerman BL (2008) What loggers leave behind: impacts on big-leaf mahogany (Swietenia macrophylla) commercial populations and potential for post-logging recovery in the Brazilian Amazon. Forest Ecology and Management 255: 269-281.

Grogan J \& Galvão J (2006) Factors limiting post-logging seedling regeneration by big-leaf mahogany (Swietenia macrophylla) in southeastern Amazonia, Brazil, and implications for sustainable management. Biotropica 38: 219-228.

Grogan J \& Galvão J (2006) Physiographic and floristic gradients across topography in transitional seasonally dry evergreen forests of southeastern Amazonia, Brazil. Acta Amazonica 36: 483-496.

Grogan J (2005) Mogno (Swietenia macrophylla, Meliaceae). In: Shanley P \& Medina G (eds.), Frutiferas e Plantas Úteis na Vida Amazônica, pp. 115-122. Mulheres da Mata/Imazon: Belém, Pará, Brazil.

Grogan J, Landis RM, Ashton MS \& Galvão J (2005) Growth response by big-leaf mahogany (Swietenia macrophylla) advance seedling regeneration to overhead canopy release in southeast Pará, Brazil. Forest Ecology and Management 204: 399-412.

Grogan J \& Barreto P (2005) Big-leaf mahogany on CITES Appendix II: big challenge, big opportunity. Conservation Biology 19: 973-976.

Grogan J, Vidal E \& Schulze M (2005) Apoio científico para os padrões de manejo de madeira na floresta amazônica - a questão da sustentabilidade. Ciência \& Ambiente 32: 103-117.

Grogan J, Ashton MS \& Galvão J (2003) Big-leaf mahogany (Swietenia macrophylla) seedling survival and growth across a topographic gradient in southeast Pará, Brazil. Forest Ecology and Management 186: 311-326.

Grogan J, Galvão J, Simões L \& Veríssimo A (2003) Regeneration of big-leaf mahogany in closed and logged forests of southeastern Pará, Brazil. In: Lugo A, Figueroa Colón JC \& Alayón M (eds.), Big-Leaf Mahogany: Genetics, Ecology, and Management, pp. 193-208. Springer-Verlag: New York, NY, USA.

Grogan J (2002) Some simple management guidelines could help the sustainable management of bigleaf mahogany in the neotropics. Tropical Forest Update, ITTO Newsletter 12(4): 22-23.

Grogan J, Barreto P \& Veríssimo A (2002) Mogno na Amazônia Brasileira: Ecologia e Perspectivas de Manejo (Mahogany in the Brazilian Amazon: Ecology and Perspectives on Management). IMAZON, Belém, PA, Brazil. 58 pp.

Grogan, J (2001) Bigleaf mahogany (Swietenia macrophylla King) in southeast Pará, Brazil: a life history study with management guidelines for sustained production from natural forests. PhD dissertation, Yale University, New Haven, CT.

Gullison RE, Panfil SN, Strouse JJ \& Hubbell SP (1996) Ecology and management of mahogany (Swietenia macrophylla King) in the Chimanes Forest, Beni, Bolivia. Botanical Journal of the Linnean Society 122: 9-34.

Jennings S \& Baima AMV (2005) The influence of population and forest structure on fruit production in mahogany (Swietenia macrophylla King) and their consequences for sustainable management. International Forestry Journal 7: 363-369.

Kelty MJ, Cámara-Cabrales L \& Grogan J (2011) Red oak in southern New England and big-leaf mahogany in the Yucatan Peninsula: can mixed-species forests be sustainably managed for single-species production? Journal of Sustainable Forestry.

Lemes MR, Dick CW, Navarro C, Lowe, AJ, Cavers S \& Gribel R (2010) Chloroplast DNA Microsatellites Reveal Contrasting Phylogeographic Structure in Mahogany (Swietenia macrophylla King, Meliaceae) from Amazonia and Central America. Tropical Plant Biology 3: 40-49.

Lemes MR, Grattapaglia D, Grogan J, Proctor J \& Gribel R (2007) Flexible mating system in a logged population of mahogany (Swietenia macrophylla King, Meliaceae): implications for the management of a threatened neotropical tree species. Plant Ecology 192: 169-180.

Lemes MR, Gribel R, Procter J \& Grattapaglia D (2003) Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation. Molecular Ecology 12: 2875-2883.

Lopes JCA, Jennings SB \& Matni NM (2008) Planting mahogany in canopy gaps created by commercial harvesting. Forest Ecology and Management 255: 300-307.

Mayhew JE \& Newton AC (1998) The Silviculture of Mahogany. CABI Publishing, New York, NY, USA.

Negreros-Castillo P, Snook LK \& Mize CW (2003) Regenerating mahogany (Swietenia macrophylla) from seed in Quintana Roo, Mexico: the effects of sowing method and clearing treatment. Forest Ecology and Management 183: 351-362.

Norghauer JM, Nock C \& Grogan J (in review) The importance of tree size and fecundity for seed dispersal of a threatened Neotropical timber tree, big-leaf mahogany (Swietenia macrophylla). PLoS ONE Biology.

Norghauer JM, Malcolm JR \& Zimmerman BL (2008) Canopy cover mediates interactions between a specialist caterpillar and seedlings of a neotropical tree. Journal of Ecology 96: 103-113.

Norghauer JM, Grogan J, Malcolm JR \& Felfili JM (2010) Long-distance seed dispersal helps big-leaf mahogany seedlings escape defoliation by a specialist caterpillar. Oecologia 162: 405-412.

Schulze M (2008) Technical and financial analysis of enrichment planting in logging gaps as a potential component of forest management in eastern Amazonia. Forest Ecology and Management 255: 866-879.

Schulze M, Grogan J, Landis RM \& Vidal E (2008) How rare is too rare to harvest? Management challenges posed by low-density timber species in the Brazilian Amazon. Forest Ecology and Management 256: 1443-1457.

Schulze M, Vidal E, Grogan J, Zweede J \& Zarin D (2005) Madeiras nobres em perigo: práticas e leis atuais de manejo florestal não garantem a exploração sustentável. Ciência Hoje 214: 66-69.

Snook LK, Cámara-Cabrales L \& Kelty MJ (2005) Six years of fruit production by mahogany trees (Swietenia macrophylla King): patterns of variation and implications for sustainability. Forest Ecology and Management 206: 221-235.

Snook LK \& Negreros-Castillo P (2004) Regenerating mahogany (Swietenia macrophylla King) on clearings in Mexico's Maya forest: the effects of clearing method and cleaning on seedling survival and growth. Forest Ecology and Management 189: 143-160.

Thiele JC \& Grimm V (in press) NetLogo meets R: Linking agent-based models with a toolbox for their analysis. Environmental Modelling and Software.

Verwer C, Peña-Claros M, van der Staak D, Ohlson-Kiehn K \& Sterck FJ (2008) Silviculture enhances the recovery of overexploited mahogany Swietenia macrophylla. Journal of Applied Ecology 45: 1770-1779.

Wilensky U (1999) NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and ComputerBased Modeling, Northwestern University, Evanston, IL, USA.

17 CONTACT US

If you have questions about the model, please email Chris Free: cfree@swietking.org. If you are unable to email, questions can be directed to:

James Grogan
44 Cave Hill Rd Apt 2
Leverett, MA 01054 USA
Tel: +1-413-548-8180
More information on our research can be found on our website or in the publications above:
http://www.swietking.org

APPENDIX A: DATA SOURCES

This research program's principal study site, Marajoara, is a forest industry-owned management area in southeast Pará, Brazil $\left(7^{\circ} 50^{\prime} \mathrm{S}, 50^{\circ} 16^{\prime} \mathrm{W}\right)$. The site was selectively logged for mahogany between 1992-1994. Model demographic parameters are derived from a sample mahogany population consisting of 358 surviving trees $>10 \mathrm{~cm}$ diameter in an area of 2050 ha . These trees were censused annually for survival, stem diameter growth, and fruit production from 19972010. Other phases of mahogany's life cycle, including temporal and spatial patterns of seed dispersal, seed germination, and seedling establishment rates, were quantified in observational and experimental studies at Marajoara. Fruit production data are supplemented by observations of ~ 325 mahogany trees at three additional sites in southeast Pará and at the Acre/West Amazon site. Because few large ($>100 \mathrm{~cm}$ diameter) adult trees survived logging at Marajoara or were available for observation at the other study sites, fruit production data are supplemented with data from Gullison et al. (1996).

The example populations, discussed at greater length in section 6.1, were derived from: a 100% area inventory of mahogany trees $\geq 20 \mathrm{~cm}$ diameter in a 204-ha subplot of the Marajoara field site; a randomly stratified transect survey of mahogany trees $\geq 20 \mathrm{~cm}$ diameter in 1035 ha at Marajoara (10% of the total area); and a 100%-area inventory of mahogany trees $\geq 20 \mathrm{~cm}$ diameter in 685 ha at the Acre/West Amazon site. Due to selective logging prior to the study, mortality and growth rates may reflect a small post-logging increase.

Due to the scarcity of natural regeneration in gap environments, simulated seedling/sapling mortality and growth rates in large gaps are based on data from experimental outplantings across light gradients in large clearings initiated in 1995. These data present optimistic estimates of juvenile performance due to the manual removal of competing vines and secondary vegetation during the experiments' initial three years.

Canopy disturbances are simulated based on an observed size distribution of gap-forming canopy gaps during 1996-1997 at Marajoara.

APPENDIX B: MODEL DETAILS \& DEFINITIONS

MODEL FEATURES

*abc	Button
豪	Slider
foion	Switch
陣	Chooser
${ }^{\text {abe }}$	Input
${ }_{5}^{205}$	Monitor
-	Plot
50090	Output
Reximild	Note

Slider: A slider allows selection from a range of values. The model has sliders for Time and LOGGING PARAMETERS.

Switch: A switch allows a variable to be turned on/off. The Logging switch turns the logging function on/off before simulation.

Chooser: A chooser allows a user to choose among variable values. The Populations chooser allows the user to select between three example populations and three user-defined population options.

Input: An input box allows the user to type in a value for a variable. There are two types of inputs: number and text. The Site-Width, Site-Height, and Patch-Area input boxes accept number inputs. The File-Name and DIAM-Attribute-Name input boxes accept text inputs.

Monitor: A monitor displays the value of a built-in expression. The Area, Population, and Harvest Productivity monitors report the area of the field site, the density/volume of trees in the initial and current populations, and the number/volume of trees logged during harvests.

Plot: A plot provides a real time graph of model results. The Diameter Distribution plot tracks the size distribution of the population and the Tree Abundance plot tracks tree abundance.

Output: An output provides a text window on the model interface. The Definitions output provides definitions of the interface features when the ? (Help) buttons are pressed.

Note: A note provides text labels for each section of features. MODEL SETTINGS, LOGGING PARAMETERS, YEAR 0 POPULATION, etc., are all provided to organize and structure the interface.

INTERFACE DEFINITIONS (see schematic, page 3)

MODEL CONTROL BAR

The Interface tab displays model controls and simulations.

The Information tab displays a basic information about the model.
The Procedures tab displays the workspace where the model code is stored and modified.
Edit: This button is only active when a feature is selected on the interface. Pressing the button allows the selected feature to be edited. Use it to modify the range/increment of a harvest parameter.

Delete: This button is only active when a feature is selected on the interface. Pressing the button will delete the selected feature. Do not use this button! All features are necessary to the model.

Add + Button: In combination, these add buttons, sliders, switches, choosers, inputs, monitors, plots, outputs, or notes to the interface. First press Add and then Button to choose a feature from the pop-up menu.
normal speed: This slider determines the speed of model runs. Slide the round knob left for slower, slide right for faster.
view updates: Determines whether landscape updates are shown. When checked, you can view continuous updates or on ticks updates (that is, at the end of each year). Unchecking view updates yields faster model runs.

Settings: Determines the size, shape, and resolution of the landscape, and sets the time unit.

MODEL CONTROLS

MODEL CONTROLS

Setup	Establishes initial population on landscape.
Defaults	Resets harvest and other parameters to default conditions.
Populations	Lists selection of example and user-defined initial populations.
Site Area	Area of selected site in hectares (ha).
Logging	Determines whether logging is on/off during the simulation(s).
Time	Number of years the model will simulate.
Run 1 Year	Runs the model for one year.
Run X Years	Runs the model until time limit or all trees are harvested or die.
$\boldsymbol{?}$	Help button returns definitions for a given model section.

LOGGING PARAMETERS

Minimum-Diameter The minimum diameter of commercial trees (cm).
Retention-Rate The retention rate of commercial-sized trees (\%).
Minimum-Density The minimum post harvest density of commercial-size trees (trees / 100 ha).
Cutting-Cycle The number of years between harvests.

YEAR 0 / CURRENT POPULATION*
Total Density The density of trees $>20 \mathrm{~cm}$ diameter in the field site (trees / 100 ha).

Commercial Density
Commercial Volume
Diameter Distribution

The density of commercial-sized trees in the field site (trees / 100 ha).
The volume of timber in the commercial population $\left(\mathrm{m}^{3}\right)$.
Bar columns $=10-\mathrm{cm}$ diam increments; gray line $=$ commercial diam.
Black = initial size distribution; red = current size distribution.
Vertical gray lines = harvest years.
Black = total tree abundance; red = commercial tree abundance .

HARVEST PRODUCTIVITY
Logged Volume The volume of trees logged in the most recent harvest $\left(\mathrm{m}^{3}\right)$.
Total Logged Volume The volume of trees logged in all previous harvests $\left(\mathrm{m}^{3}\right)$.
Total \# Logged Trees The number of trees logged in all previous harvests.

DATA UPLOAD
File-Name Name of user data file with diameter and or XY data.
DIAM-Attribute-Name Name of the diameter attribute in the user shapefile.
Site-Width The width (X) of the user field site (meters).
Site-Height
Patch-Area
The height (Y) of the user field site (meters).
The size of the patches on the landscape (pixels).
Resize
Resizes the landscape based on the 'Patch-Area' listed.
DEFINITIONS
All Definitions
Export Results

Displays the definition/function of all features on the interface. Exports simulation results to a user named and located file.

* Commercial-sized trees, or commercial trees, are trees whose diameters are larger than the minimum diameter cutting limit, or minimum-diameter. Note that in both Diameter Distribution and Tree Abundance plots, no trees $<20 \mathrm{~cm}$ diameter are shown.

COMMAND CENTER

The Command Center allows commands to be issued directly, without adding them to the model's procedures. This is useful for extracting more specific information about the population than default outputs provide.
observer>: This pop-up menu specifies the Command Center mode. It can be changed to turtles, patches, or links modes, but should be left in observer mode.

Click on the History triangle to browse and select from previously typed commands.
$\boxed{\star}$ This button switches the Command Center window between vertical window and horizontal views. Other resizing options include: Drag the gray bar separating the window from the interface to a new position. Or, press the small gray arrows above the 'Clear' button to hide the window or make it very large.

Clear: Press this button to clear the contents of the Command Center window. To clear the History pop-up menu, choose 'Clear History' in the menu options.

APPENDIX C: MODEL FUNCTIONS

This section provides an in-depth review of how the model functions. APPENDIX D: MODEL CODE provides a similar review alongside the actual model code. The fully annotated model code is also available in the Procedures tab of the NetLogo interface.

Initial Population

The model begins with an initial population selected by the user and represented on the NetLogo landscape. The landscape is contained within a box where each cell represents a $10 \mathrm{~m} \times 10 \mathrm{~m}$ $\left(100 \mathrm{~m}^{2}\right)$ patch on the landscape; disturbances and seeds dispersed over a landscape edge are not returned to the other side. Because the model is spatial, the arrangement of trees on the landscape is significant in determining simulation outcomes.

At each time step (one year), the following demographic parameters are estimated for each tree based on regression equations derived from field census data: (1) diameter increment ($\mathrm{cm} \mathrm{yr}^{-1}$); (2) mortality probability; (3) probability of fruit production; and (4) number of fruit produced. The model simulates logging, growth, mortality, disturbance, and reproduction each year with these parameters until the time limit is exceeded or all trees are harvested or die.

Growth Function

The growth function incorporates growth autocorrelation, the tendency of fast-growing trees to remain fast growing, in order to account for past growth history. Diameter increment is estimated as a function of stem diameter using generalized least squares to incorporate an autoregressive error term, accounting for growth autocorrelation over the preceding three years.

The trees begin the simulation with no growth history, so three residuals el (1-year previous), e2 (2-years previous), and e3 (3-years previous) are assigned an identical random number drawn from the distribution $N(0,0.48)$. The present year residual, $e 0$, is calculated as the following:

$$
\begin{equation*}
e 0=(0.467 * e 1)+(0.247 * e 2)+(0.111 * e 3)+\sigma \tag{1}
\end{equation*}
$$

where $\sigma \sim N(0,0.48)$. The residuals are recalculated each time step because, as a year passes, the residual of the previous year becomes the residual of two years before. The residuals are therefore recalculated as $e 3=e 2, e 2=e 1, e 1=e 0$, and $e 0=$ the value of the above equation calculated with the new residual values. The growth rate, or diameter increment, of each tree is then calculated using the following equation:

$$
\begin{equation*}
\text { growth rate }\left(\text { cm } y r^{-1}\right)=0.36+(\text { diameter } * 0.011)-(0.0127 * \max (0, \text { diameter }-30))+e 0 \tag{2}
\end{equation*}
$$

where the $\max (0$, diameter -30$)$ evaluates to zero when a tree is $<30 \mathrm{~cm}$ diameter and evaluates to (diameter -30) when a tree is $>30 \mathrm{~cm}$ diameter. The resulting diameter increment is added to the current diameter to calculate the new tree diameter. A diameter increment <0 is reclassed as 0 given the impossibility of negative growth.

Logging Function

The logging function removes eligible trees from the population at the beginning of the simulation and during the subsequent harvest years, as determined by the cutting cycle parameter. The function removes the maximum possible number of trees larger than minimum commercial size without violating either the retention rate or post-harvest density requirements. Half of logged trees are allowed to disperse seeds prior to death and all logged trees create canopy gaps proportional to stem diameter based on the equations in the Mortality Function section below.

Mortality Function

The mortality function estimates the probability of mortality as a binary logistic regression of the current year stem diameter and diameter increment using the following equation:

$$
\begin{gather*}
\log -\text { odds }(\text { mortality })=-2.11-(1.337 * \text { growth-rate })-(0.107 * \text { diameter })+ \tag{3}\\
(0.1305 * \max (0, \text { diameter }-23))-(0.0197 * \max (0, \text { diameter }-86))
\end{gather*}
$$

which is subsequently used to calculate the probability of mortality with the logit transformation:

$$
\begin{equation*}
\text { mortality probability }=(\exp \log -o d d s) /(1+(\exp \log \text {-odds })) \tag{4}
\end{equation*}
$$

where the fate of each tree is determined by comparing its probability of mortality to a random number between 0 and 1. If the randomly selected number is smaller than the probability of mortality, the tree is marked as dead.

Before its removal from the population, a dead tree is given a 50% chance of dying standing and a 50% chance of dying before seeding. A tree dying after seeding will fruit and disperse seeds before being removed from the population, whereas a tree dying before seeding will be removed from the population without fruiting. A tree dying standing will be removed from the population without creating a treefall gap, whereas a tree resulting in a treefall gap will create a disturbance area according to the following equation:

$$
\begin{equation*}
\text { disturbance area }\left(m^{2}\right)=-25.171+(1.398 * d b h)+\left(0.02 * d b h^{\wedge} 2\right) \tag{5}
\end{equation*}
$$

where $d b h$, or diameter at breast height $(1.3 \mathrm{~m})$, is calculated from diameter as follows:

$$
\begin{equation*}
d b h(\mathrm{~cm})=(\text { diameter }-0.2842709) / 1.1003362 \tag{6}
\end{equation*}
$$

The radius of the disturbance area is calculated using the equation for the area of a circle, $a=$ πr^{2}. The zone of recruitment, that is, the area of the disturbance available for seedling recruitment, is estimated to be 10 m shorter in radius than the radius of the disturbance area. The resulting disturbance and zone of recruitment areas are constructed on the landscape using the tree as the center of the each circular area.

Disturbance Function

Canopy disturbances and the associated zones of recruitment are added to the landscape until 0.026 of the landscape is disturbed, including disturbances from fallen trees. Disturbance sizes are drawn from a gamma distribution fit to an observed size distribution of gap-forming canopy disturbances ($\mathrm{n}=87$; shape: 0.6127 ; scale: 0.0056). The radius of the zone of recruitment is 10 m less than the radius of the disturbance; therefore, a disturbance with a radius $>10 \mathrm{~m}$ is necessary to for recruitment. The zones of recruitment represent the only viable areas for recruitment on the landscape as recruitment does not occur in the forest understory or on the outer edge of canopy disturbances.

Reproduction Function

Fruiting probability is estimated as a binary logistic regression of the current year stem diameter and diameter increment of trees marked as reproductive (all non-seedling trees and 50% of dead trees) using the following equation:

$$
\begin{gather*}
\log \text {-odds }(\text { fruiting })=-6.13+(\text { diameter } * 0.1177)+(-0.1079 * \max (0, \text { diameter }-50)) \tag{7}\\
+(\text { growth-rate } * 2.796)+(-2.957 * \max (0, \text { growth-rate }-0.75))
\end{gather*}
$$

which is subsequently used to calculate the fruiting probability using the logit transformation:

$$
\begin{equation*}
\text { fruiting probability }=(\exp \log \text {-odds }) /(1+(\exp \log -o d d s)) \tag{8}
\end{equation*}
$$

If fruiting occurs, fruit production is estimated as a function of current year stem diameter and diameter increment in a generalized linear model with a gamma error term. The gamma distribution function is parameterized with the scale and shape factors, alpha (α) and lambda (λ). The α value is a constant 1.22 while the λ value is calculated as a function of the mean number of fruit and the variance of this mean. The mean number of fruit and variance of the mean for a tree of any given diameter are calculated as follows:

$$
\begin{gather*}
\text { mean-fruit }=\exp (0.2933+(0.03153552 * \text { diameter })+ \tag{9}\\
\left.(0.00025 * \text { diameter } 2)-\left(1.514 * 10^{\wedge}-6 * \text { diameter }^{\wedge} 3\right)\right) \\
\text { variance-fruit }=0.822 * \text { mean-fruit } 2 \tag{10}
\end{gather*}
$$

These values are subsequently used in the calculation of λ, which, in conjunction with α, is used to calculate the gamma distribution describing the distribution of fruit production values for a single tree. These two equations are as follows:

$$
\begin{align*}
& \text { lambda }=(1 /(\text { variance-fruit / mean-fruit })) \tag{11}\\
& \text { number of fruit produced }=\operatorname{gamma}(\alpha, \lambda) \tag{12}
\end{align*}
$$

where fruit production by a given tree is capped at 750 to avoid unrealistically high values.

Once fruit production is determined for surviving reproductive trees, new seedling recruits are added to the population based on the following equation:

$$
\begin{equation*}
1 \text {-year-old seedlings }=\sum_{i=1}^{n} \text { fruit }_{i} \cdot s_{\text {fruit }} \cdot f_{\text {gap }, i} \cdot f_{\text {surv }} \tag{13}
\end{equation*}
$$

where n is the number of reproductive trees in the population, fruit $_{i}$ is the number of fruit produced by tree $i, s_{f r u i t}$ is the mean number of seeds per fruit, $f_{g a p, i}$ is the fraction of seeds landing in gaps for tree i, and $f_{\text {surv }}$ is the fraction of seeds that germinate and survive to become 1-yearold seedlings. $S_{\text {fruit }}$ and $f_{\text {surv }}$ are constant values of 42.4 and 0.085 , respectively, based on observations at the Marajoara field site. The $f_{g a p, i}$ fraction represents the proportion of the 0.91ha seed shadow overlapped by zones of recruitment of contributing treefall gaps and natural disturbances. The resulting number of surviving seeds is divided by the number of zone of recruitment patches within the seed shadow. Each zone of recruitment patch receives the resulting number of 1 -year-old seedlings with diameters drawn randomly from an observed distribution of seedling diameters.

Model Reset Function

The final function in the model procedure resets the trees and landscape before beginning the process again during the next time step (the next year). First, all dead trees and disturbances are removed from the landscape. Second, the tree variables associated with reproduction - fruiting probability, fruit production, and number of surviving seeds - are reset to default values to prevent the values of a reproductive year from carrying over into a non-reproductive year.

APPENDIX D: MODEL CODE

This section provides a fully annotated copy of the model code. This code is identical to the code in the Procedures tab of the NetLogo interface. The structure of the model code is summarized in Model Procedure Code (section 12.3) and reviewed briefly below.

The head of the model code provides basic information about the model: the title, the authors, the funders, the landscape dimensions, etc. The EXTENSIONS, BREEDS, AND VARIABLES section declares the code extensions and variables used throughout the model. The MODEL SETUP section sets up the model by checking for errors, setting variable values, drawing the landscape, setting the plots and monitors, and establishing the initial population on the landscape. The $\boldsymbol{R} \boldsymbol{U} N$ MODEL section successively grows, logs, kills, disturbs, and reproduces the trees on the landscape. This section also contains the code for exporting data and resetting the trees and landscape for the next year of simulation.

The procedures are color-coded according to the following scheme: keywords are GREEN; constants are ORANGE; comments are gray; built-in NetLogo commands are BLUE; primitive reporters are PURPLE; and everything else is BLACK.
Model Title: Big-Leaf Mahogany Growth \& Yield Model
Authors: Christopher Free, R. Mattew Landis, \& James Grogan
; ; Funding: International Institute of Tropical Forestry (USFS-IITF),

100 ha SE Par $\ddagger(204$ ha) : 143 trees, 70.1 trees / 100 ha
SE Par $\ddagger(1035 h a): 745$ trees, 72.0 trees 100 ha
LANDSCAPE INFO
; ; The patches are $10 \mathrm{~m} \times 10 \mathrm{~m}$ squares. The world is contained within a box; ; ; therefore, seeds dispersed over edges are not tracked by the model
; NetLogo Dimensions $=244$ patches $\times 108$ patches $(1 / 2$ above $) ~=1061.13$ ha
; This line of code turns on the GIS code extension.
; $;$ This line of code specifies trees as the agents in the model.
; ; MODEL CONSTANTS
;; A boolean indicating whether errors were detected during the world setup procedures.
variable to record the initial density (\#/100ha) of trees larger than 20 cm .
variable to record the initial density (\#/100ha) of trees larger than commercial-size commercial size.
and Galv (o 2006b).
death (Landis Model) its
; ; The proportion of seeds surviving to become first year seedlings (Grogan and Galv،o 2006a).
; ; The seedling diameter (cm) distribution (Grogan et al. 2008).
; ; ticker to track the time (years) since the last harvest.
; A list of the volumes (m3) of the trees logged during all previous harvests.
; A list of the volumes (m3) of the trees logged during the most recent harvest.
; A list of the sum volumes (m3) of the trees logged during each harvest event.
; The probability of mortality for a tree, calculated from diameter and growth.
tree variables
A boolean indicating whether a tree is alive (alive/dead). A boolean indicating the reproductive status of a tree (yes/no). The diameter (cm) of a tree 10 cm off the ground. The basal area (m2) of a tree, calculated from dbh.
The volume (m3) of a tree, calculated from diameter
\qquad

; ; PATCH VARIABLES

; PATCH VARIABLES
; A boolean indicating whether a patch is a disturbance patch (yes/no).
; A boolean indicating whether a patch is a sweetspot patch (yes/no).

; SLIDER AND SWITCH GLOBALS

; This chooser determines which tree population is used in the model simulations. set errors? false
if Populations $=\| "$ [user-message "A 'Population' must be selected." set errors? true]
if Populations $=$ "EXAMPLE POPULATIONS" [user-message "A 'Example Population' must be selected." set errors? true]
if Populations = "USER POPULATIONS" [user-message "A 'User Population' must be selected." set errors? true]
if Populations $=$ "User Population (xyd)" or Populations = "User Population (shp)" or Populations = "User Population (csv)" [
if empty? File-Name [user-message "A 'File-Name' must be specified." set errors? true]
; ; This switch determines whether trees are logged during the model simulations.

[^0]

\[

$$
\begin{aligned}
& \text {; MODEL SETUP } \\
& \text {; ; =============}
\end{aligned}
$$
\]

; ; Time (0-150; 5; 100)

LOGGING PARAMETERS minimum-diameter retention-rate
minimum-density minimum-density
cutting-cycle
; ; USER DATA UPLOAD
File-Name
Site-Width
Site-Height
Patch-Area AULT STANDARDS FROM GROGAN AND BARRETO (2005) ; ; The minimum allowable density of commercial trees after

; LOADS XYD, SHP, AND CSV DATA ; ; The name of the txt, shp, or

patches-own [
disturbance?
sweetspot?
 ; ; MODEL PARAMETERS
; Populations (Popu

(pə7sṭT suoṭfetndod) suoṭłetndod !

rees-own [

seedling? reproduce?
dbh
basal-area growth-rate mort-rate fruit-prob num-fruit
e0
e1
e2
e3 set errors? false
if Populations $=\| "$ [user-message "A 'Population' must be selected." set errors? true]
if Populations $=$ "EXAMPLE POPULATIONS" [user-message "A 'Example Population' must be selected." set errors? true]
if Populations $=$ "USER POPULATIONS" [user-message "A 'User Population' must be selected." set errors? true]
if Populations $=$ "User Population (xyd)" or Populations = "User Population (shp)" or Populations = "User Population (csv)" [
if empty? File-Name [user-message "A 'File-Name' must be specified." set errors? true]
to error-check
if Populations if Populations $="$ " [user-message "A 'Population
if Populations $=$ "EXAMPLE POPULATIONS" [user-mes

i；＝＝＝
to set－patch－area
if Populations $=$＂SE Par $\ddagger(204 \mathrm{ha}) "$［set Patch－Area 2
if Populations $=$＂SE Par $\ddagger(1035 \mathrm{ha}) "$［set Patch－Area
if Populations $=$＂Acre／West Amazon＂［set Patch－Area
if Populations $=$＂User Population（xyd）＂［set Patch
if Populations $=$＂User Population（shp）＂［set Patch
if Populations $=$＂User Population（csv）＂［set Patch

；；Setup Outline ；；＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝

$\begin{array}{cl}\text { to setup } & \text { ；} ; \text { SETS UP INITIAL CONDITIONS } \\ \text { ca } & \text { ；；This clears the entire Net }\end{array}$

o setup－defaults＂\quad ；SETS UP DEFAULT HARVEST PARAMETERS AND MODEL PROCEDURE
set Populations＂SE Par \ddagger（204ha）＂；i DEFAULT：SE Parł（ 204 ha ）＝＞provides fast／clear simulations
；；DEFAULT：Logging On $\Rightarrow>$ most users are examining logging
DEFAULT： 100 years \Rightarrow covers three logging cycles
60 cm diameter $=>$ current Brazilian standard
20% retention rate＝＞current Brazilian standard
5 trees／ 100 ha＝＞current Brazilian standard
30 years $=>$ current Brazilian standard
DEFAULT：
if Populations $=$＂SE Par $\ddagger(204$ ha）＂$[$ set Patch－Area 2．75］
if Populations $=$＂SE Par $\ddagger(1035 \mathrm{ha}) "$［set Patch－Area 1．05］
if Populations $=$＂Acre／West Amazon＂［set Patch－Area 0．70］
if Populations $=$＂User Population（xyd）＂［set Patch－Area 1
if Populations $=$＂User Population（shp）＂［set Patch－Area 1
if Populations $=$＂User Population（csv）＂［set Patch－Area 1
；；＝＝2
setup－globals setup－world
setup－trees
setup－dist－list
setup－plots
setup－monitors
tick
end

；；Setup Defaults

DEFAULT：
：山Tn＊斗示の！
output－print＂Press the＇？＇button next to each section to view descriptions of the section＂
output－print＂features in this definition box．Press＇All Definitions＇to review the features＂
output－print＂of all the sections．＂
end
；；Setup Globals
to setup-globals ; \quad SETS UP GLOBALS (MODEL CONSTANTS)
ously, count patches * 100 / 10000 .
(тәрон sт̣иет) 6uт̣pueq eed after death. 9900て ointey pue . 2005). $100 \mathrm{~m} 2=53.82$
Landis Model). dee (Lanit (Grogan et al previ
$(0.026$) disturbed each year (Grogan and Galv<o 2006b).

[^1]

to setup-patches \quad i SETS UP INITIAL PATCH ENVIRONMENT

$\begin{array}{ll}\text { ask patches [} & \text {; The default landscape is colored green with no } \\ \text { set disturbance? false } & \text {; disturbances or sweetspot areas as these are }\end{array}$
; ; added to the landscape by a later procedure.
; ; The patches are reset between every time step.
Sets up the different tree populations
Sets up tree distribution based on 204 ha Par f field site (Grogan 2001).
Sets up tree distribution based on 1035 ha Par \ddagger field site (Grogan 2001)
Sets up based on Acre/West Amazon (Grogan et al. 2008).

SETS TREES ON LANDSCAPE - MARAJOARA 204 HA PLOT
Stores GIS tree data in NetLogo list.
Stores GIS boundary data in NetLogo list.
Stores GIS seasonal stream data in NetLogo list.
Sets the extent of the NetLogo world to the extent
of the three files combined.

Draws the field site boundary in white
Draws the stream systems in blue
with a line thickness of two.
ous and creates a tree at each of the listed
coordinates and assigns the trees the associated
diameters. The next line sets up the remaining
tree variables.

let mara-204-river-data gis:load-dataset "Data/mara-204-river-data.shp"
gis:set-world-envelope (gis:envelope-union-of (gis:envelope-of mara-204-bound
(gis:envelope-of mara-204-river-data)(gis:envelope-of mara-204-tree-data))

$$
\begin{aligned}
& \text { gis:set-drawing-color white } \\
& \text { gis:draw mara-204-boundary-data } 2 \\
& \text { gis:set-drawing-color blue } \\
& \text { gis:draw mara-204-river-data } 2
\end{aligned}
$$

foreach gis:feature-list-of mara-204-tree-data [reate-trees 1 [0 location
to setup-mara-204-trees
let mara-204-tree-data gis:load-dataset "Data/mara-204-tree-data.shp"

; ; This code reads each row of the GIS shapefile and creates a tree at each of the listed diameters. The next line sets up the remaining ;; tree variables.
set ycor item 1 location ? "DIAM" set diameter gis:property-value ? "DIAM"
setup-tree-values

setup

let $x m i n \min x-l i s t$

$\begin{array}{ll}\text { let xmax max x-list } & \text {; } \quad \text { Calculates the maximum x-coordinate value. } \\ \text { let ymin min } y \text {-list } & \text {; Calculates the minimum y-coordinate value }\end{array}$
; ; Calculates the maximum y-coordinate value.
> $\stackrel{\text { c }}{+}$
> ; ; inwards (1 patch / 10 meters) to get the trees off
\qquad
; Creates a list for storing diameters from the user provided csv.
; Opens the csv file specified by the user in the FILE-NAME input.
; ; Reads the diameters in the csv into the diameter list.

$$
\begin{array}{r}
\text {] } \\
\text { end }
\end{array}
$$

to setup-tree-values

set disturbance-dataset (list)
; ; Setup Disturbance \& Seedling Diameter Lists
; $;$ READS IN DISTURBANCE LIST
; File opened, file read, file closed.
> ; ; READS IN SEEDLING LIST
while [not file-at-end?][set seed-diam-list fput file-read seed-diam-list]
file-close
; ; Setup Plots
; ; ===========
to setup-plots This plot shows the size distribution of the initial than 20 cm diameter. The current population distribution
is updated each time step. It also displays a vertical boundary on the size-distribution plot. The initial histo-
gram is only drawn once (year 1) and the commercial line
; is drawn every year so it stretches to the max value.

[^2]plotxy minimum-diameter plot-y-max

$\begin{array}{ll}\text { set-current-plot "Tree Abundance" } & \quad ; \quad \text { This plot shows the abundance of trees over time by } \\ \text { set-current-plot-pen "Total Trees" }\end{array}$
 harvest years are marked by a gray vertical line. ; Harvest years are only shown for the given time length + 1) [(?1) * cutting-cycle + 1] set-current-plot-pen
plot count trees with [diamete
set-current-plot-pen "Commercial plot count trees with [diameter $>$ set-current-plot-pen "harvest-year set-current-plot-pen Commercial Trees . . foreach harvest-years [
plot-pen-up
plotxy ? 10
plot-pen-down
plotxy ?1 plot-y-max
set y0-tot-density count trees with [diameter $>=20$] / site-area * 100
set y0-comm-density count trees with [diameter $>=$ minimum-diameter] / site-area * 100
set y0-comm-volume sum [volume] of trees with [diameter $>=$ minimum-diameter]
output-print "Press the '?' button next to each section to view descriptions of the section"
output-print "features in this definition box. Press 'All Definitions' to review the features" output-print "of all the sections."
; S Setup Monitors
; This code sets up the initial population variables (total / commercial density and commercial volume)
; ; which are displayed in the interface monitors.

to setup-monitors

output-print "press the '?' button next to each section to view descriptions
; RUN MODEL
; ; ==========
; ; ===1
; Model Outline
; ; ==============
to run-model
if ticks >= Time [stop]
if count trees $=0$ [stop]
reset-trees
grow-trees
if Logging [log-trees]
kill-trees
disturb-trees
reproduce-trees
remove-trees
remove-gaps
tick
setup-plots
end
Grow Trees Outline
$==================$
; ; GROWTH PROCEDURE
to calculate-growth ;i CALCULATES GROWTH RATE
set growth-rate $(0.36+($ diameter * 0.011$)-(0.0127 * \max (l i s t(0)(d i a m e t e r-30))+e 0)$ if growth-rate < 0 [set growth-rate 0]
to calculate-diameter \quad UPDATES DIAM, DBH, AREA, AND VOLUME ; ; Uses the standard formulas.
; ; LOGGING PROCEDURE
; LOGGING PROCEDURE
; This line of code logs the trees in the first year.
; ; The harvest-ticker keeps track of the time since the last
; $;$ harvest. If the cutting cycle time has not passed, it will
; add another year. If it has passed, it will cut the trees
; and restart the ticker.
; ; HARVESTS TREES
; List placed here because it needs to be reset annually.
; Defines commercial trees as trees with diameters larger
; than the minimum diameter. Determines number of commercial
; trees in order to calculate the maximum allowable harvest,
; assuming there are no density violations. The study area
; is calculated for density calculations. If the density
; after cutting the maximum number of trees exceeds the
; minimum allowable density the maximum number of trees
 ask n-of max-num-cut comm-trees [
set tot-logged-volume fput (precision volume 1) tot-logged-volume
set cur-logged-volume fput (precision volume 1) cur-logged-volume set alive? false if random-float 1 < prob-die-no-seeds [set reproduce? false]] $^{\text {crt-kill-gap }}$
if (max-num-cut - count-differential) > 0 [
ask n-of floor (max-num-cut - count-differe ask n-of floor (max-num-cut - count-differential) comm-trees [
set tot-logged-volume fput (precision volume 1) tot-logged-volume
set cur-logged-volume fput (precision volume 1) cur-logged-volume set cur-logged-volume fput (precision volume 1) cur-logged-volume

if random-float 1 < prob-die-no-seeds [set reproduce? false]

set

* max (list (diameter - 23) (0)) -
; KILL PROCEDURE
; Calculates log-odds for pmort then uses the logit
; transformation to convert to probability. If random
; number < then mark the tree for dead. 50\% of trees
; create tree fall gap and 50\% reproduce after death.
; CREATES TREE FALL GAP
; The tree fall gap area is based on dbh. The gap radius is
; calculated from the area and the sweetspot radius and area
; are calculated subsequently. The gaps are constructed on the
; ; landscape by marking the patches within the gap radius as
; disturbance and patches within the sweetspot radius as sweetspot.
; ; disturbance and patches within the sweetspot radius as sweetspot.
 ; ; $314.159 \mathrm{~m} 2=0.02 \mathrm{x}^{\wedge} 2+1.398 \mathrm{x}-25.171$

[^3]count patches with [disturbance?] long as 2.6% of the landscape has not been disturbed, the models adds a new disturbance to the landscape, each drawn ; from the a gamma distribution fit to the original disturbance size
; distribution. The disturbance is created in a random location and ;
let lambda 0.0055509234
let dist-area random-gamma alpha lambda
let dist-radius (sqrt (dist-area / pi)) let sweet-radius (dist-radius - 10)
ask patches in-radius (dist-radius / 10) [set disturbance? true set pcolor red]
if sweet-radius >0 [ask patches in-radius (sweet-radius / 10) [set sweetspot? true set pcolor red - 2]] set total-gap-area count patches with [disturbance?]

; ; REPRODUCTION PROCEDURE

; ; Calculates the number of fruit, number of seeds, and disperses seeds.
; Reproduce Trees Outline
set growth-rate 0
set
set num-fruit 0
set surv-seeds
set e3 random-normal 00.48
set e2 e3
set e1 e3
set e0 $((0.467 * e 1)+(0.247 * e 2)+(0.111 * e 3))$

let log-text "" let pop-text ""
ifelse member? "User" Populations [set pop-text File-Name][set pop-text Populations]
file-print "SIMULATION RESULTS"
file-print (word ("Site Name: ")
file-print (word ("Logging: ") (log-text) ("; Number of Harvest Cycles: ") (floor (ticks / cutting-cycle) + 1) (" cycles"))
file-print (word ("Time Limit: ") (Time) (" years; ") ("Time Reached: ") (ticks) (" years")) file-print ""
file-print (word "The following summary represents the results of a single simulation. To validate these results, please conduct" " Behaviorspace experiment. Please see the User Manual for more information.")
file-print (word "* 'Total Abundance/Density' statistics pertain to trees larger than 20 cm diameter. 'Commercial Abundance/"
"Density' statistics pertain to trees larger than the commercial diameter.")

[^4]file-print "YEAR O STATISTICS" file-print (word ("Minimum Diameter: file-print (word ("Retention Rate: file-print (word ("Cutting Cycle:
\qquad fil
 file-print (word ("Commercial Abundance: file-print (word ("Commercial Density:
file-print (word ("Commercial Volume: file-print ""
file-print (word ("YEAR ") (ticks) (" STATISTICS"))
ha"))

[^0]: ${ }^{\left(\text {Pabs. }^{\circ} \mathrm{I}\right.} \div 08$

 $$
 \begin{aligned}
 & \text { Eor commercial logging (DEFAULT: } 60 \mathrm{~cm} \text {). } \\
 & \text { ig (DEFAULT: 20\% must be left standing) } \\
 & \text { er logging (DEFAULT: } 5 \text { trees / } 100 \text { ha). } \\
 & \text { al trees (DEFAULT: } 30 \text { yr). }
 \end{aligned}
 $$

 ; The width (x) of the user study site (meters).
 ; The height (y) of the user study site (meters)
 ; The size (pixels) of patches on the landscape.
 input folder.

 > ser input folder. laced in the user ; The name of the txt, shp, or csv in the shapefile placed in the ; The size (pixels)

 scape f 7no əq of pamot

[^1]:

[^2]: plotxy minimum-diameter 0

[^3]: ; ; Disturb Trees

[^4]: TURNED ON. NO TREES WERE LOGGED DURING THIS SIMULATION."
 file-print "THE LOGGING FUNCTION WAS NOT TUR
 file-print "" file-print

